1. Suppressive effects of Ixodes persulcatus sialostatin L2 against Borrelia miyamotoi-stimulated immunity.
- Author
-
Sajiki Y, Konnai S, Okagawa T, Maekawa N, Isezaki M, Yamada S, Ito T, Sato K, Kawabata H, Logullo C, Jr IDSV, Murata S, and Ohashi K
- Subjects
- Animals, Arthropod Proteins, Mice, Borrelia, Ixodes physiology, Relapsing Fever, Tick-Borne Diseases
- Abstract
Borrelia miyamotoi infection is an emerging tick-borne disease that causes hard tick-borne relapsing fever. B. miyamotoi is transmitted through the bite of ticks, including Ixodes persulcatus. Although accumulating evidence suggests that tick salivary proteins enhance the infectivity of other tick-borne pathogens, the association of B. miyamotoi with tick-derived proteins remains unknown. In this study, the effect of I. persulcatus sialostatin L2 (Ip-sL2), a tick-derived cystatin, on specific immunity to B. miyamotoi was preliminarily investigated in vitro. Mice were immunized with heat-killed B. miyamotoi and in vitro analyses of the splenocytes of the immunized mice indicated that the expression levels of the activation markers of CD11c
+ and CD3+ cells were significantly upregulated by B. miyamotoi stimulation. Spleen cells from B. miyamotoi-immunized mice were used to determine whether Ip-sL2 regulates murine immune responses against B. miyamotoi. Treatment with Ip-sL2 in vitro inhibited the activation of CD11c+ and CD3+ cells as well as inflammatory cytokine production by cultured splenocytes. These findings show that Ip-sL2 has modulatory effects on murine immune responses to B. miyamotoi. Therefore, it is necessary to clarify in the future whether Ip-sL2 is involved in the enhanced infectivity of B. miyamotoi., (Copyright © 2022. Published by Elsevier GmbH.)- Published
- 2022
- Full Text
- View/download PDF