1. Determination of trace elements and electrolyte levels in kidney tissue of simvastatin-treated septic rats.
- Author
-
Ates G, Tamer S, Ozkok E, Yorulmaz H, Yalcin IE, and Demir G
- Subjects
- Animals, Male, Rats, Acute Kidney Injury chemically induced, Acute Kidney Injury metabolism, Acute Kidney Injury drug therapy, Acute Kidney Injury pathology, Simvastatin pharmacology, Rats, Wistar, Sepsis drug therapy, Sepsis metabolism, Trace Elements metabolism, Kidney drug effects, Kidney metabolism, Kidney pathology, Lipopolysaccharides toxicity, Electrolytes blood, Electrolytes metabolism
- Abstract
Trace elements are cofactors in various enzymes in the antioxidant defense and cell homeostasis required in the tissue during inflammation. In acute kidney injury induced by lipopolysaccharide (LPS), renal cells are affected by cytotoxicity. Renal evacuation and gastrointestinal absorption rates are important in regulating plasma levels of trace elements. Simvastatin is a widely used anti-lipidemic drug with known anti-inflammatory effects. This study aimed to examine the effect of simvastatin on trace elements and electrolyte levels in kidney tissue in rats with LPS-induced sepsis. Adult male Wistar albino rats were divided into four groups: control, LPS (20 mg/kg, i.p., single dose), simvastatin (20 mg/kg, o.p., 5 days), and LPS + Simvastatin (LPS + Sim). Sodium, potassium, calcium, magnesium, selenium, zinc, copper, and histological structural changes were examined in kidney tissue samples 4 h after LPS execution. The inductively coupled plasma optical emission spectroscopy technique (ICP-OES) was used to determine the tissue trace element levels. In rats with sepsis-induced LPS, selenium, calcium, sodium, and magnesium levels significantly decreased while copper, potassium, and zinc levels significantly increased compared to other experimental groups. In sepsis treated with the simvastatin (LPS + Simvastatin) group, trace elements and electrolyte levels are like the control groups, apart from selenium levels. Selenium levels were significantly decreased in the LPS + Simvastatin group compared to the controls. As a result of examining the kidney tissues under a light microscope, simvastatin improved tissue damage caused by LPS-induced acute kidney injury. LPS-induced renal injury and simvastatin caused significant changes in the oxidant/antioxidant system. In septic rats, simvastatin was shown to balance some trace element levels, and it may improve damage in the kidney tissue., (© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
- Published
- 2024
- Full Text
- View/download PDF