1. Enhancement of lacrimal gland cell function by decellularized lacrimal gland derived hydrogel.
- Author
-
Wiebe-Ben Zakour KE, Kaya S, Matros JC, Hacker MC, Cheikh-Rouhou A, Spaniol K, Geerling G, and Witt J
- Subjects
- Hydrogels chemistry, Endothelial Cells, Tissue Engineering methods, Extracellular Matrix metabolism, Lacrimal Apparatus metabolism, Lacrimal Apparatus ultrastructure, Mesenchymal Stem Cells
- Abstract
Sustainable treatment of aqueous deficient dry eye (ADDE) represents an unmet medical need and therefore requires new curative and regenerative approaches based on appropriate in vitro models. Tissue specific hydrogels retain the individual biochemical composition of the extracellular matrix and thus promote the inherent cell´s physiological function. Hence, we created a decellularized lacrimal gland (LG) hydrogel (dLG-HG) meeting the requirements for a bioink as the basis of a LG model with potential for in vitro ADDE studies. Varying hydrolysis durations were compared to obtain dLG-HG with best possible physical and ultrastructural properties while preserving the original biochemical composition. A particular focus was placed on dLG-HG´s impact on viability and functionality of LG associated cell types with relevance for a future in vitro model in comparison to the unspecific single component hydrogel collagen type-I (Col) and the common cell culture substrate Matrigel. Proliferation of LG epithelial cells (EpC), LG mesenchymal stem cells, and endothelial cells cultured on dLG-HG was enhanced compared to culture on Matrigel. Most importantly with respect to a functional in vitro model, the secretion capacity of EpC cultured on dLG-HG was higher than that of EpC cultured on Col or Matrigel. In addition to these promising cell related properties, a rapid matrix metalloproteinase-dependent biodegradation was observed, which on the one hand suggests a lively cell-matrix interaction, but on the other hand limits the cultivation period. Concluding, dLG-HG possesses decisive properties for the tissue engineering of a LG in vitro model such as cytocompatibility and promotion of secretion, making it superior to unspecific cell culture substrates. However, deceleration of biodegradation should be addressed in future experiments., (Creative Commons Attribution license.)
- Published
- 2024
- Full Text
- View/download PDF