1. Restricting tumor lactic acid metabolism using dichloroacetate improves T cell functions.
- Author
-
Rostamian H, Khakpoor-Koosheh M, Jafarzadeh L, Masoumi E, Fallah-Mehrjardi K, Tavassolifar MJ, M Pawelek J, Mirzaei HR, and Hadjati J
- Subjects
- Apoptosis drug effects, Cell Culture Techniques, Cell Line, Tumor, Cell Proliferation drug effects, Glycolysis drug effects, Humans, Oxidation-Reduction drug effects, Reactive Oxygen Species, Tumor Microenvironment drug effects, Antineoplastic Agents pharmacology, Dichloroacetic Acid pharmacology, Lactic Acid metabolism, Lymphocyte Activation drug effects, T-Lymphocytes drug effects
- Abstract
Background: Lactic acid produced by tumors has been shown to overcome immune surveillance, by suppressing the activation and function of T cells in the tumor microenvironment. The strategies employed to impair tumor cell glycolysis could improve immunosurveillance and tumor growth regulation. Dichloroacetate (DCA) limits the tumor-derived lactic acid by altering the cancer cell metabolism. In this study, the effects of lactic acid on the activation and function of T cells, were analyzed by assessing T cell proliferation, cytokine production and the cellular redox state of T cells. We examined the redox system in T cells by analyzing the intracellular level of reactive oxygen species (ROS), superoxide and glutathione and gene expression of some proteins that have a role in the redox system. Then we co-cultured DCA-treated tumor cells with T cells to examine the effect of reduced tumor-derived lactic acid on proliferative response, cytokine secretion and viability of T cells., Result: We found that lactic acid could dampen T cell function through suppression of T cell proliferation and cytokine production as well as restrain the redox system of T cells by decreasing the production of oxidant and antioxidant molecules. DCA decreased the concentration of tumor lactic acid by manipulating glucose metabolism in tumor cells. This led to increases in T cell proliferation and cytokine production and also rescued the T cells from apoptosis., Conclusion: Taken together, our results suggest accumulation of lactic acid in the tumor microenvironment restricts T cell responses and could prevent the success of T cell therapy. DCA supports anti-tumor responses of T cells by metabolic reprogramming of tumor cells., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF