1. Physical properties of lanthanum monosulfide thin films grown on (100) silicon substrates.
- Author
-
Cahay, M., Garre, K., Wu, X., Poitras, D., Lockwood, D. J., and Fairchild, S.
- Subjects
- *
PROPERTIES of matter , *LANTHANUM , *SILICON , *THIN films , *ATOMIC force microscopy , *X-ray diffraction - Abstract
Thin films of lanthanum monosulfide (LaS) have been deposited on Si (100) substrates by pulsed laser deposition. The films are golden yellow in appearance with a mirrorlike surface morphology and a sheet resistance around 0.1 Ω/□, as measured using a four-probe measurement technique. The thin films are characterized by atomic force microscopy (AFM), x-ray diffraction (XRD) analysis, high resolution transmission electron microscopy (HRTEM), ellipsometry, and Raman spectroscopy. The root-mean-square variation of (1 μm thick) film surface roughness measured over a 1 μm2 area by AFM was found to be 1.74 nm. XRD analysis of fairly thick films (micrometer size) reveals the growth of the cubic rocksalt structure with a lattice constant of 5.863(7) Å, which is close to the bulk LaS value. HRTEM images reveal that the films are comprised of nanocrystals separated by regions of amorphous material. Two beam bright field TEM images show that there is a strain contrast in the Si substrate right under the interface with the LaS film and penetrating into the Si substrate. This suggests that there is an initial epitaxial-like growth of the LaS film on the Si substrate that introduces a strain as a result of the 8% lattice mismatch between the film and substrate. Ellipsometry measurements of the LaS films are well characterized by a Drude-Lorentz model from which an electron concentration of about 2.52×1022 cm-3 and a mobility around 8.5 cm2/V s are derived. Typical crystalline LaS features were evident in Raman spectra of the films, but the spectra also revealed their disordered (polycrystalline) nature. [ABSTRACT FROM AUTHOR]
- Published
- 2006
- Full Text
- View/download PDF