1. A Strategy for Achieving Smooth Filamentation Cutting of Transparent Materials with Ultrafast Lasers.
- Author
-
Tokarev, Vladimir N., Melnikov, Igor V., and Rafailov, Edik U.
- Subjects
LASER beam cutting ,LASERS ,LASER pulses ,FIBERS ,SAPPHIRES ,MULTISCALE modeling - Abstract
Featured Application: High-quality and high-throughput eco-friendly regimes of laser cutting glasses, sapphire and other transparent materials are found based on the model. Possible practical applications are in display manufacturing, the automotive and other industries. A strategy is proposed for achieving a practically important mode of laser processing—a so-called "smooth" laser filamentation cutting (LFC) of transparent materials by a moving beam of a pulse-periodic pico- or subpicosecond laser. With such cutting, the surface of the sidewalls of the cuts have a significantly improved smoothness, and, as a result, the laser-cut plates have increased resistance to damage and cracking due to mechanical impacts during their subsequent use. According to the proposed analytical model, for the case when each filament is formed only by a single laser pulse, the strategy of such cutting is defined by a set of necessary conditions, whose implementation requires, in turn, a certain selection and matching with each other of irradiation parameters (pulse duration and energy, repetition rate, pitch of filaments following) and of material parameters—thermal, optical and mechanical strength constants. The model shows good agreement with experiments on sapphire and tempered glass. Besides, LFC modes are also predicted that provide very high cutting speeds of the order of 1–25 m/s or more, or allow cutting with an extremely low average laser power, but still at a speed acceptable for practical applications. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF