8 results on '"Lopez, Philippe"'
Search Results
2. Of woods and webs: possible alternatives to the tree of life for studying genomic fluidity in E. coli
- Author
-
Lapointe François-Joseph, Lopez Philippe, Schliep Klaus, Bicep Cédric, Beauregard-Racine Julie, and Bapteste Eric
- Subjects
E. coli ,trees ,networks ,quartets ,lateral gene transfer ,methodological pluralism ,Biology (General) ,QH301-705.5 - Abstract
Abstract Background We introduce several forest-based and network-based methods for exploring microbial evolution, and apply them to the study of thousands of genes from 30 strains of E. coli. This case study illustrates how additional analyses could offer fast heuristic alternatives to standard tree of life (TOL) approaches. Results We use gene networks to identify genes with atypical modes of evolution, and genome networks to characterize the evolution of genetic partnerships between E. coli and mobile genetic elements. We develop a novel polychromatic quartet method to capture patterns of recombination within E. coli, to update the clanistic toolkit, and to search for the impact of lateral gene transfer and of pathogenicity on gene evolution in two large forests of trees bearing E. coli. We unravel high rates of lateral gene transfer involving E. coli (about 40% of the trees under study), and show that both core genes and shell genes of E. coli are affected by non-tree-like evolutionary processes. We show that pathogenic lifestyle impacted the structure of 30% of the gene trees, and that pathogenic strains are more likely to transfer genes with one another than with non-pathogenic strains. In addition, we propose five groups of genes as candidate mobile modules of pathogenicity. We also present strong evidence for recent lateral gene transfer between E. coli and mobile genetic elements. Conclusions Depending on which evolutionary questions biologists want to address (i.e. the identification of modules, genetic partnerships, recombination, lateral gene transfer, or genes with atypical evolutionary modes, etc.), forest-based and network-based methods are preferable to the reconstruction of a single tree, because they provide insights and produce hypotheses about the dynamics of genome evolution, rather than the relative branching order of species and lineages. Such a methodological pluralism - the use of woods and webs - is to be encouraged to analyse the evolutionary processes at play in microbial evolution. This manuscript was reviewed by: Ford Doolittle, Tal Pupko, Richard Burian, James McInerney, Didier Raoult, and Yan Boucher
- Published
- 2011
- Full Text
- View/download PDF
3. EGN: a wizard for construction of gene and genome similarity networks.
- Author
-
Halary, Sébastien, McInerney, James O., Lopez, Philippe, and Bapteste, Eric
- Subjects
GENOMES ,GENOMICS ,GENETIC transformation ,HEREDITY ,GENETICS - Abstract
Background: Increasingly, similarity networks are being used for evolutionary analyses of molecular datasets. These networks are very useful, in particular for the analysis of gene sharing, lateral gene transfer and for the detection of distant homologs. Currently, such analyses require some computer programming skills due to the limited availability of user-friendly freely distributed software. Consequently, although appealing, the construction and analyses of these networks remain less familiar to biologists than do phylogenetic approaches. Results: In order to ease the use of similarity networks in the community of evolutionary biologists, we introduce a software program, EGN, that runs under Linux or MacOSX. EGN automates the reconstruction of gene and genome networks from nucleic and proteic sequences. EGN also implements statistics describing genetic diversity in these samples, for various user-defined thresholds of similarities. In the interest of studying the complexity of evolutionary processes affecting microbial evolution, we applied EGN to a dataset of 571,044 proteic sequences from the three domains of life and from mobile elements. We observed that, in Borrelia, plasmids play a different role than in most other eubacteria. Rather than being genetic couriers involved in lateral gene transfer, Borrelia's plasmids and their genes act as private genetic goods, that contribute to the creation of genetic diversity within their parasitic hosts. Conclusion: EGN can be used for constructing, analyzing, and mining molecular datasets in evolutionary studies. The program can help increase our knowledge of the processes through which genes from distinct sources and/or from multiple genomes co-evolve in lineages of cellular organisms. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF
4. Evolutionary analyses of non-genealogical bonds produced by introgressive descent.
- Author
-
Bapteste, Eric, Lopez, Philippe, Bouchard, Frédéric, Baquero, Fernando, McInerney, James O., and Burian, Richard M.
- Subjects
- *
GENEALOGY , *GENETIC transcription , *BIOLOGISTS , *GENETIC code , *BIOCOMPLEXITY - Abstract
All evolutionary biologists are familiar with evolutionary units that evolve by vertical descent in a tree-like fashion in single lineages. However, many other kinds of processes contribute to evolutionary diversity. In vertical descent, the genetic material of a particular evolutionary unit is propagated by replication inside its own lineage. In what we call introgressive descent, the genetic material of a particular evolutionary unit propagates into different host structures and is replicated within these host structures. Thus, introgressive descent generates a variety of evolutionary units and leaves recognizable patterns in resemblance networks. We characterize six kinds of evolutionary units, of which five involve mosaic lineages generated by introgressive descent. To facilitate detection of these units in resemblance networks, we introduce terminology based on two notions, P3s (subgraphs of three nodes: A, B, and C) and mosaic P3s, and suggest an apparatus for systematic detection of introgressive descent. Mosaic P3s correspond to a distinct type of evolutionary bond that is orthogonal to the bonds of kinship and genealogy usually examined by evolutionary biologists. We argue that recognition of these evolutionary bonds stimulates radical rethinking of key questions in evolutionary biology (e.g., the relations among evolutionary players in very early phases of evolutionary history, the origin and emergence of novelties, and the production of new lineages). This line of research will expand the study of biological complexity beyond the usual genealogical bonds, revealing additional sources of biodiversity. It provides an important step to a more realistic pluralist treatment of evolutionary complexity. [ABSTRACT FROM AUTHOR]
- Published
- 2012
- Full Text
- View/download PDF
5. Let Them Fall Where They May: Congruence Analysis in Massive Phylogenetically Messy Data Sets.
- Author
-
Leigh, Jessica W., Schliep, Klaus, Lopez, Philippe, and Bapteste, Eric
- Abstract
Interest in congruence in phylogenetic data has largely focused on issues affecting multicellular organisms, and animals in particular, in which the level of incongruence is expected to be relatively low. In addition, assessment methods developed in the past have been designed for reasonably small numbers of loci and scale poorly for larger data sets. However, there are currently over a thousand complete genome sequences available and of interest to evolutionary biologists, and these sequences are predominantly from microbial organisms, whose molecular evolution is much less frequently treelike than that of multicellular life forms. As such, the level of incongruence in these data is expected to be high. We present a congruence method that accommodates both very large numbers of genes and high degrees of incongruence. Our method uses clustering algorithms to identify subsets of genes based on similarity of phylogenetic signal. It involves only a single phylogenetic analysis per gene, and therefore, computation time scales nearly linearly with the number of genes in the data set. We show that our method performs very well with sets of sequence alignments simulated under a wide variety of conditions. In addition, we present an analysis of core genes of prokaryotes, often assumed to have been largely vertically inherited, in which we identify two highly incongruent classes of genes. This result is consistent with the complexity hypothesis. [ABSTRACT FROM PUBLISHER]
- Published
- 2011
- Full Text
- View/download PDF
6. Harvesting Evolutionary Signals in a Forest of Prokaryotic Gene Trees.
- Author
-
Schliep, Klaus, Lopez, Philippe, Lapointe, François-Joseph, and Bapteste, Éric
- Abstract
Phylogenomic studies produce increasingly large phylogenetic forests of trees with patchy taxonomical sampling. Typically, prokaryotic data generate thousands of gene trees of all sizes that are difficult, if not impossible, to root. Their topologies do not match the genealogy of lineages, as they are influenced not only by duplication, losses, and vertical descent but also by lateral gene transfer (LGT) and recombination. Because this complexity in part reflects the diversity of evolutionary processes, the study of phylogenetic forests is thus a great opportunity to improve our understanding of prokaryotic evolution. Here, we show how the rich evolutionary content of such novel phylogenetic objects can be exploited through the development of new approaches designed specifically for extracting the multiple evolutionary signals present in the forest of life, that is, by slicing up trees into remarkable bits and pieces: clans, slices, and clips. We harvested a forest of 6,901 unrooted gene trees comprising up to 100 prokaryotic genomes (41 archaea and 59 bacteria) to search for evolutionary events that a species tree would not account for. We identified 1) trees and partitions of trees that reflected the lifestyle of organisms rather than their taxonomy, 2) candidate lifestyle-specific genetic modules, used by distinct unrelated organisms to adapt to the same environment, 3) gene families, nonrandomly distributed in the functional space, that were frequently exchanged between archaea and bacteria, sometimes without major changes in their sequences. Finally, 4) we reconstructed polarized networks of genetic partnerships between archaea and bacteria to describe some of the rules affecting LGT between these two Domains. [ABSTRACT FROM PUBLISHER]
- Published
- 2011
- Full Text
- View/download PDF
7. Evaluating Phylogenetic Congruence in the Post-Genomic Era.
- Author
-
Leigh, Jessica W., Lapointe, François-Joseph, Lopez, Philippe, and Bapteste, Eric
- Abstract
Congruence is a broadly applied notion in evolutionary biology used to justify multigene phylogeny or phylogenomics, as well as in studies of coevolution, lateral gene transfer, and as evidence for common descent. Existing methods for identifying incongruence or heterogeneity using character data were designed for data sets that are both small and expected to be rarely incongruent. At the same time, methods that assess incongruence using comparison of trees test a null hypothesis of uncorrelated tree structures, which may be inappropriate for phylogenomic studies. As such, they are ill-suited for the growing number of available genome sequences, most of which are from prokaryotes and viruses, either for phylogenomic analysis or for studies of the evolutionary forces and events that have shaped these genomes. Specifically, many existing methods scale poorly with large numbers of genes, cannot accommodate high levels of incongruence, and do not adequately model patterns of missing taxa for different markers. We propose the development of novel incongruence assessment methods suitable for the analysis of the molecular evolution of the vast majority of life and support the investigation of homogeneity of evolutionary process in cases where markers do not share identical tree structures. [ABSTRACT FROM AUTHOR]
- Published
- 2011
- Full Text
- View/download PDF
8. Metabolic bacterial genes and the construction of high-level composite lineages of life.
- Author
-
Méheust, Raphaël, Lopez, Philippe, and Bapteste, Eric
- Subjects
- *
BACTERIAL genes , *BACTERIAL transformation , *PROKARYOTES , *BACTERIAL evolution , *ARCHAEBACTERIA - Abstract
Understanding how major organismal lineages originated is fundamental for understanding processes by which life evolved. Major evolutionary transitions, like eukaryogenesis, merging genetic material from distantly related organisms, are rare events, hence difficult ones to explain causally. If most archaeal lineages emerged after massive acquisitions of bacterial genes, a rule however arises: metabolic bacterial genes contributed to all major evolutionary transitions. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.