1. Micron-scale phenomena observed in a turbulent laser-produced plasma
- Author
-
Nobuki Kamimura, Tatiana Pikuz, Gianluca Gregori, T. Yabuuchi, Norimasa Ozaki, S. A. Pikuz, Tommaso Vinci, K. Miyanishi, Tadashi Togashi, Kento Katagiri, P. Mabey, Yuhei Umeda, V. Bouffetier, Bruno Albertazzi, Keiichi Sueda, G. Rigon, Olivier Poujade, F. Barbato, Makina Yabashi, R. Kodama, Alexis Casner, M. Koenig, Emeric Falize, Y. Inubushi, S. S. Makarov, M. J.-E. Manuel, Laboratoire pour l'utilisation des lasers intenses (LULI), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), and Institute for Open and Transdisciplinary Research Initiative
- Subjects
[PHYS.PHYS.PHYS-FLU-DYN]Physics [physics]/Physics [physics]/Fluid Dynamics [physics.flu-dyn] ,Science ,General Physics and Astronomy ,Imaging techniques ,7. Clean energy ,01 natural sciences ,General Biochemistry, Genetics and Molecular Biology ,Spectral line ,010305 fluids & plasmas ,law.invention ,Physics::Fluid Dynamics ,Fluid dynamics ,law ,Physics::Plasma Physics ,0103 physical sciences ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,010306 general physics ,Inertial confinement fusion ,Physics ,Multidisciplinary ,Fluid dynamics, Imaging techniques, Laser-produced plasmas ,Scattering ,Turbulence ,General Chemistry ,Plasma ,Laser-produced plasmas ,Laser ,Computational physics ,Physics::Space Physics ,Physics::Accelerator Physics ,Beam (structure) - Abstract
Turbulence is ubiquitous in the universe and in fluid dynamics. It influences a wide range of high energy density systems, from inertial confinement fusion to astrophysical-object evolution. Understanding this phenomenon is crucial, however, due to limitations in experimental and numerical methods in plasma systems, a complete description of the turbulent spectrum is still lacking. Here, we present the measurement of a turbulent spectrum down to micron scale in a laser-plasma experiment. We use an experimental platform, which couples a high power optical laser, an x-ray free-electron laser and a lithium fluoride crystal, to study the dynamics of a plasma flow with micrometric resolution (~1μm) over a large field of view (>1 mm2). After the evolution of a Rayleigh–Taylor unstable system, we obtain spectra, which are overall consistent with existing turbulent theory, but present unexpected features. This work paves the way towards a better understanding of numerous systems, as it allows the direct comparison of experimental results, theory and numerical simulations. Turbulence effects explored use macroscale systems in general. Here the authors generate a turbulent plasma using laser irradiation of a solid target and study the dynamics of the plasma flow at the micron-scale by using scattering of an XFEL beam.
- Published
- 2021