1. Wafer-scale nanofabrication of sub-100 nm arrays by deep-UV displacement Talbot lithography
- Author
-
Victor J. Gómez, Mariusz Graczyk, Reza Jafari Jam, Sebastian Lehmann, and Ivan Maximov
- Subjects
Materials science ,Bioengineering ,02 engineering and technology ,engineering.material ,010402 general chemistry ,01 natural sciences ,Nanoimprint lithography ,law.invention ,Coating ,law ,Etching (microfabrication) ,General Materials Science ,Wafer ,Electrical and Electronic Engineering ,Lithography ,business.industry ,Mechanical Engineering ,General Chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Nanolithography ,Mechanics of Materials ,engineering ,Optoelectronics ,Nanodot ,0210 nano-technology ,business ,Layer (electronics) - Abstract
In this manuscript, we demonstrate the potential of replacing the standard bottom anti-reflective coating (BARC) with a polymethylglutarimide (PMGI) layer for wafer-scale nanofabrication by means of deep-UV displacement talbot lithography (DTL). PMGI is functioning as a developable non-UV sensitive bottom anti-reflective coating (DBARC). After introducing the fabrication process using a standard BARC-based coating and the novel PMGI-based one, the DTL nanopatterning capabilities for both coatings are compared by means of the fabrication of etched nanoholes in a dielectric layer and metal nanodots made by lift-off. Improvement of DTL capabilities are attributed to a reduction of process complexity by avoiding the use of O2 plasma etching of the BARC layer. We show the capacity of this approach to produce nanoholes or nanodots with diameters ranging from 95 to 200 nm at a wafer-scale using only one mask and a proper exposing dose. The minimum diameter of the nanoholes is reduced from 118 to 95 nm when using the PMGI-based coating instead of the BARC-based one. The possibilities opened by the PMGI-based coating are illustrated by the successful fabrication of an array of nanoholes with sub-100 nm diameter for GaAs nanowire growth on a 2″ GaAs wafer, a 2″ nanoimprint lithography (NIL) master stamp, and an array of Au nanodots made by lift-off on a 4″ silica wafer. Therefore, DTL possess the potential for wafer-scale manufacturing of nano-engineered materials.
- Published
- 2020
- Full Text
- View/download PDF