1. Adsorption behavior of NO2 molecules in ZnO-mono/multilayer graphene core–shell quantum dots for NO2 gas sensor
- Author
-
Dong Ick Son, Young Jae Park, Dong Hee Park, Hi Gyu Moon, Jaehyeon Lee, Kyu Seung Lee, Joo Song Lee, and Jaeho Shim
- Subjects
Core shell ,Materials science ,Adsorption ,Chemical engineering ,X-ray photoelectron spectroscopy ,Graphene ,law ,Quantum dot ,General Chemical Engineering ,Potential change ,Molecule ,Monolayer graphene ,law.invention - Abstract
We demonstrated the sensing properties and adsorption mechanism of NO2 molecules of monolayer graphene and multilayer graphene encapsulated ZnO QDs for NO2 gas adsorption. The gas response value of ZnO-multilayer graphene (ZMLG) QDs was approximately 23 % and 7.2 and 25.5 times higher than that with ZnO-monolayer graphene (ZG) and ZnO QDs, respectively. The surface potential change of ZMLG QDs increased up to 14.25 times compared to ZnO QDs and 6.33 times increased compared to ZG QDs. We proposed an accurate adsorption mechanism for the improvement of the detection behavior that is occured by covering the graphene shells into ZnO QDs by the Brunauer–Emmett–Teller (BET), X-ray photoelectron spectroscopy (XPS), and SKPM measurement. These results are expected to increase the accuracy of gas sensor characteristic analysis.
- Published
- 2022
- Full Text
- View/download PDF