1. Effect of BaO substitution for CaO on the structural and thermal properties of SiO2–B2O3–Al2O3–CaO–Na2O–P2O5 bioactive glass system used for implant coating applications
- Author
-
Saeed Hesaraki, Alireza Kolahi, and Mohammad Khoeini
- Subjects
Materials science ,Barium oxide ,Process Chemistry and Technology ,Sintering ,Thermal expansion ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,law.invention ,chemistry.chemical_compound ,Chemical engineering ,chemistry ,law ,Bioactive glass ,Phase (matter) ,Materials Chemistry ,Ceramics and Composites ,Crystallization ,Glass transition ,Calcium oxide - Abstract
The present study replaced 3.30 and 9.00 mol.% BaO for CaO in a SiO2–B2O3–Al2O3–CaO–Na2O–P2O5 bioactive glass system used for implant coating applications. Variations of the glass structure, thermal properties, cytotoxicity, and radiopacity of glasses were studied. As demonstrated by the results, upon adding barium oxide to the glass structure, the weight density increased significantly, while a slight decrease in oxygen density was determined. Introducing barium oxide into glass composition did not cause any considerable change in the spectra of FTIR and Raman. It was demonstrated that the amount of bridging oxygen in the glass structure remained quite unaffected. The hot stage microscopy evaluations revealed further shrinkage of barium-containing frits due to lower viscosity and hence, higher viscous flow of these glasses. By substituting barium oxide for calcium oxide and increasing its concentration, the glass transition temperature (Tg) and the dilatometric softening temperature (Td) decreased, while the thermal expansion coefficient increased. Moreover, upon substituting 9 mol.% barium oxide for calcium oxide, a 30 °C reduction in maximum sintering temperature (Tms) of the glass was obtained, whereas the shrinkage rate was increased 1.7 times. It was indicated that the sintering process of barium-incorporated glasses would easily proceed without any phase crystallization. The barium-incorporated glasses exhibited more radiopacity. Additionally, no cytotoxic effect was caused by the substitution, and the Ba-containing glasses could be used for biomedical applications and implant coating as well.
- Published
- 2021
- Full Text
- View/download PDF