1. Exosome-shuttled FTO from BM-MSCs contributes to cancer malignancy and chemoresistance in acute myeloid leukemia by inducing m6A-demethylation: A nano-based investigation.
- Author
-
Kou R, Li T, Fu C, Jiang D, Wang Y, Meng J, Zhong R, Liang C, and Dong M
- Subjects
- Humans, Drug Resistance, Neoplasm, Cytarabine pharmacology, Cytarabine metabolism, Demethylation, Alpha-Ketoglutarate-Dependent Dioxygenase FTO genetics, Alpha-Ketoglutarate-Dependent Dioxygenase FTO metabolism, Exosomes metabolism, Exosomes pathology, RNA, Long Noncoding metabolism, Leukemia, Myeloid, Acute genetics, Mesenchymal Stem Cells metabolism, Mesenchymal Stem Cells pathology, Adenine analogs & derivatives
- Abstract
Although bone marrow mesenchymal stem cells (BM-MSCs)-derived exosomes have been reported to be closely associated with acute myeloid leukemia (AML) progression and chemo-resistance, but its detailed functions and molecular mechanisms have not been fully delineated. Besides, serum RNA m6A demethylase fat mass and obesity-associated protein (FTO)-containing exosomes are deemed as important indicators for cancer progression, and this study aimed to investigate the role of BM-MSCs-derived FTO-exosomes in regulating the malignant phenotypes of AML cells. Here, we verified that BM-MSCs-derived exosomes delivered FTO to promote cancer aggressiveness, stem cell properties and Cytosine arabinoside (Ara-C)-chemoresistance in AML cells, and the underlying mechanisms were also uncovered. Our data suggested that BM-MSCs-derived FTO-exo demethylated m6A modifications in the m6A-modified LncRNA GLCC1 to facilitate its combination with the RNA-binding protein Hu antigen R (HuR), which further increased the stability and expression levels of LncRNA GLCC1. In addition, LncRNA GLCC1 was verified as an oncogene to facilitate cell proliferation and enhanced Ara-C-chemoresistance in AML cells. Further experiments confirmed that demethylated LncRNA GLCC1 served as scaffold to facilitate the formation of the IGF2 mRNA binding protein 1 (IGF2BP1)-c-Myc complex, which led to the activation of the downstream tumor-promoting c-Myc-associated signal pathways. Moreover, our rescuing experiments validated that the promoting effects of BM-MSCs-derived FTO-exo on cancer aggressiveness and drug resistance in AML cells were abrogated by silencing LncRNA GLCC1 and c-Myc. Thus, the present firstly investigated the functions and underlying mechanisms by which BM-MSCs-derived FTO-exo enhanced cancer aggressiveness and chemo-resistance in AML by modulating the LncRNA GLCC1-IGF2BP1-c-Myc signal pathway, and our work provided novel biomarkers for the diagnosis, treatment and therapy of AML in clinic., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF