5 results on '"Chagovets, Vitaliy V."'
Search Results
2. Validation of Breast Cancer Margins by Tissue Spray Mass Spectrometry.
- Author
-
Chagovets VV, Starodubtseva NL, Tokareva AO, Frankevich VE, Rodionov VV, Kometova VV, Chingin K, Kukaev EN, Chen H, and Sukhikh GT
- Subjects
- Breast Neoplasms metabolism, Breast Neoplasms surgery, Female, Humans, Biomarkers, Tumor analysis, Breast Neoplasms pathology, Lipidomics methods, Lipids analysis, Margins of Excision, Spectrometry, Mass, Electrospray Ionization methods
- Abstract
Current methods for the intraoperative determination of breast cancer margins commonly suffer from the insufficient accuracy, specificity and/or low speed of analysis, increasing the time and cost of operation as well the risk of cancer recurrence. The purpose of this study is to develop a method for the rapid and accurate determination of breast cancer margins using direct molecular profiling by mass spectrometry (MS). Direct molecular fingerprinting of tiny pieces of breast tissue (approximately 1 × 1 × 1 mm) is performed using a home-built tissue spray ionization source installed on a Maxis Impact quadrupole time-of-flight mass spectrometer (qTOF MS) (Bruker Daltonics, Hamburg, Germany). Statistical analysis of MS data from 50 samples of both normal and cancer tissue (from 25 patients) was performed using orthogonal projections onto latent structures discriminant analysis (OPLS-DA). Additionally, the results of OPLS classification of new 19 pieces of two tissue samples were compared with the results of histological analysis performed on the same tissues samples. The average time of analysis for one sample was about 5 min. Positive and negative ionization modes are used to provide complementary information and to find out the most informative method for a breast tissue classification. The analysis provides information on 11 lipid classes. OPLS-DA models are created for the classification of normal and cancer tissue based on the various datasets: All mass spectrometric peaks over 300 counts; peaks with a statistically significant difference of intensity determined by the Mann-Whitney U-test ( p < 0.05); peaks identified as lipids; both identified and significantly different peaks. The highest values of Q2 have models built on all MS peaks and on significantly different peaks. While such models are useful for classification itself, they are of less value for building explanatory mechanisms of pathophysiology and providing a pathway analysis. Models based on identified peaks are preferable from this point of view. Results obtained by OPLS-DA classification of the tissue spray MS data of a new sample set ( n = 19) revealed 100% sensitivity and specificity when compared to histological analysis, the "gold" standard for tissue classification. "All peaks" and "significantly different peaks" datasets in the positive ion mode were ideal for breast cancer tissue classification. Our results indicate the potential of tissue spray mass spectrometry for rapid, accurate and intraoperative diagnostics of breast cancer tissue as a means to reduce surgical intervention.
- Published
- 2020
- Full Text
- View/download PDF
3. Feature selection for OPLS discriminant analysis of cancer tissue lipidomics data.
- Author
-
Tokareva AO, Chagovets VV, Starodubtseva NL, Nazarova NM, Nekrasova ME, Kononikhin AS, Frankevich VE, Nikolaev EN, and Sukhikh GT
- Subjects
- Algorithms, Biopsy methods, Discriminant Analysis, Female, Humans, Multivariate Analysis, Tandem Mass Spectrometry, Uterine Cervical Neoplasms chemistry, Lipidomics methods, Lipids analysis, Neoplasms chemistry, Tissue Extracts analysis
- Abstract
The mass spectrometry-based molecular profiling can be used for better differentiation between normal and cancer tissues and for the detection of neoplastic transformation, which is of great importance for diagnostics of a pathology, prognosis of its evolution trend, and development of a treatment strategy. The aim of the present study is the evaluation of tissue classification approaches based on various data sets derived from the molecular profile of the organic solvent extracts of a tissue. A set of possibilities are considered for the orthogonal projections to latent structures discriminant analysis: all mass spectrometric peaks over 300 counts threshold, subset of peaks selected by ranking with support vector machine algorithm, peaks selected by random forest algorithm, peaks with the statistically significant difference of the intensity determined by the Mann-Whitney U test, peaks identified as lipids, and both identified and significantly different peaks. The best predictive potential is obtained for OPLS-DA model built on nonpolar glycerolipids (Q
2 = 0.64, area under curve [AUC] = 0.95); the second one is OPLS-DA model with lipid peaks selected by random forest algorithm (Q2 = 0.58, AUC = 0.87). Moreover, models based on particular molecular classes are more preferable from biological point of view, resulting in new explanatory mechanisms of pathophysiology and providing a pathway analysis. Another promising features for OPLS-DA modeling are phosphatidylethanolamines (Q2 = 0.48, AUC = 0.86)., (© 2019 John Wiley & Sons, Ltd.)- Published
- 2020
- Full Text
- View/download PDF
4. Integrating Proteomics and Lipidomics for Evaluating the Risk of Breast Cancer Progression: A Pilot Study.
- Author
-
Starodubtseva, Natalia L., Tokareva, Alisa O., Rodionov, Valeriy V., Brzhozovskiy, Alexander G., Bugrova, Anna E., Chagovets, Vitaliy V., Kometova, Vlada V., Kukaev, Evgenii N., Soares, Nelson C., Kovalev, Grigoriy I., Kononikhin, Alexey S., Frankevich, Vladimir E., Nikolaev, Evgeny N., and Sukhikh, Gennady T.
- Subjects
DISEASE risk factors ,CANCER invasiveness ,LIPIDOMICS ,PROTEOMICS ,BLOOD proteins - Abstract
Metastasis is a serious and often life-threatening condition, representing the leading cause of death among women with breast cancer (BC). Although the current clinical classification of BC is well-established, the addition of minimally invasive laboratory tests based on peripheral blood biomarkers that reflect pathological changes in the body is of utmost importance. In the current study, the serum proteome and lipidome profiles for 50 BC patients with (25) and without (25) metastasis were studied. Targeted proteomic analysis for concertation measurements of 125 proteins in the serum was performed via liquid chromatography–multiple reaction monitoring mass spectrometry (LC–MRM MS) using the BAK 125 kit (MRM Proteomics Inc., Victoria, BC, Canada). Untargeted label-free lipidomic analysis was performed using liquid chromatography coupled to tandem mass-spectrometry (LC–MS/MS), in both positive and negative ion modes. Finally, 87 serum proteins and 295 lipids were quantified and showed a moderate correlation with tumor grade, histological and biological subtypes, and the number of lymph node metastases. Two highly accurate classifiers that enabled distinguishing between metastatic and non-metastatic BC were developed based on proteomic (accuracy 90%) and lipidomic (accuracy 80%) features. The best classifier (91% sensitivity, 89% specificity, AUC = 0.92) for BC metastasis diagnostics was based on logistic regression and the serum levels of 11 proteins: alpha-2-macroglobulin, coagulation factor XII, adiponectin, leucine-rich alpha-2-glycoprotein, alpha-2-HS-glycoprotein, Ig mu chain C region, apolipoprotein C-IV, carbonic anhydrase 1, apolipoprotein A-II, apolipoprotein C-II and alpha-1-acid glycoprotein 1. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
5. Shotgun Lipidomics for Differential Diagnosis of HPV-Associated Cervix Transformation.
- Author
-
Starodubtseva, Natalia L., Chagovets, Vitaliy V., Nekrasova, Maria E., Nazarova, Niso M., Tokareva, Alisa O., Bourmenskaya, Olga V., Attoeva, Djamilja I., Kukaev, Eugenii N., Trofimov, Dmitriy Y., Frankevich, Vladimir E., and Sukhikh, Gennady T.
- Subjects
OROPHARYNX ,ELECTROSPRAY ionization mass spectrometry ,PAPILLOMAVIRUSES ,CERVICAL intraepithelial neoplasia ,LIPIDOMICS ,LATENT structure analysis ,MEMBRANE lipids - Abstract
A dramatic increase in cervical diseases associated with human papillomaviruses (HPV) in women of reproductive age has been observed over the past decades. An accurate differential diagnosis of the severity of cervical intraepithelial neoplasia and the choice of the optimal treatment requires the search for effective biomarkers with high diagnostic and prognostic value. The objective of this study was to introduce a method for rapid shotgun lipidomics to differentiate stages of HPV-associated cervix epithelium transformation. Tissue samples from 110 HPV-positive women with cervicitis (n = 30), low-grade squamous intraepithelial lesions (LSIL) (n = 30), high-grade squamous intraepithelial lesions (HSIL) (n = 30), and cervical cancers (n = 20) were obtained. The cervical epithelial tissue lipidome at different stages of cervix neoplastic transformation was studied by a shotgun label-free approach. It is based on electrospray ionization mass spectrometry (ESI-MS) data of a tissue extract. Lipidomic data were processed by the orthogonal projections to latent structures discriminant analysis (OPLS-DA) to build statistical models, differentiating stages of cervix transformation. Significant differences in the lipid profile between the lesion and surrounding tissues were revealed in chronic cervicitis, LSIL, HSIL, and cervical cancer. The lipids specific for HPV-induced cervical transformation mainly belong to glycerophospholipids: phosphatidylcholines, and phosphatidylethanolamines. The developed diagnostic OPLS-DA models were based on 23 marker lipids. More than 90% of these marker lipids positively correlated with the degree of cervix transformation. The algorithm was developed for the management of patients with HPV-associated diseases of the cervix, based on the panel of 23 lipids as a result. ESI-MS analysis of a lipid extract by direct injection through a loop, takes about 25 min (including preparation of the lipid extract), which is significantly less than the time required for the HPV test (several hours for hybrid capture and about an hour for PCR). This makes lipid mass spectrometric analysis a promising method for express diagnostics of HPV-associated neoplastic diseases of the cervix. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.