1. Novel thiazolopyridine derivatives of diflapolin as dual sEH/FLAP inhibitors with improved solubility.
- Author
-
Schoenthaler M, Waltl L, Hasenoehrl T, Seher D, Lutz A, Aulinger L, Temml V, König S, Siller A, Braun DE, Garscha U, Werz O, Schuster D, Schennach H, Koeberle A, and Matuszczak B
- Subjects
- Humans, Anti-Inflammatory Agents pharmacology, Enzyme Inhibitors pharmacology, Epoxide Hydrolases metabolism, Leukocytes, Mononuclear metabolism, Lipids, Pyridines pharmacology, Solubility, 5-Lipoxygenase-Activating Protein Inhibitors pharmacology, Lipoxygenase Inhibitors pharmacology, Thromboxanes chemistry, Thromboxanes pharmacology, Thiazoles chemistry, Thiazoles pharmacology
- Abstract
Inflammatory responses are orchestrated by a plethora of lipid mediators, and perturbations of their biosynthesis or degradation hinder resolution and lead to uncontrolled inflammation, which contributes to diverse pathologies. Small molecules that induce a switch from pro-inflammatory to anti-inflammatory lipid mediators are considered valuable for the treatment of chronic inflammatory diseases. Commonly used non-steroidal anti-inflammatory drugs (NSAIDs) are afflicted with side effects caused by the inhibition of beneficial prostanoid formation and redirection of arachidonic acid (AA) into alternative pathways. Multi-target inhibitors like diflapolin, the first dual inhibitor of soluble epoxide hydrolase (sEH) and 5-lipoxygenase-activating protein (FLAP), promise improved efficacy and safety but are confronted by poor solubility and bioavailability. Four series of derivatives bearing isomeric thiazolopyridines as bioisosteric replacement of the benzothiazole core and two series additionally containing mono- or diaza-isosteres of the phenylene spacer were designed and synthesized to improve solubility. The combination of thiazolo[5,4-b]pyridine, a pyridinylen spacer and a 3,5-Cl
2 -substituted terminal phenyl ring (46a) enhances solubility and FLAP antagonism, while preserving sEH inhibition. Moreover, the thiazolo[4,5-c]pyridine derivative 41b, although being a less potent sEH/FLAP inhibitor, additionally decreases thromboxane production in activated human peripheral blood mononuclear cells. We conclude that the introduction of nitrogen, depending on the position, not only enhances solubility and FLAP antagonism (46a), but also represents a valid strategy to expand the scope of application towards inhibition of thromboxane biosynthesis., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF