1. Impact of Galectin-Receptor Interactions on Liver Pathology During the Erythrocytic Stage of Plasmodium berghei Malaria.
- Author
-
Wu Y, Huang S, Xiao S, He J, and Lu F
- Subjects
- Animals, Antigens, CD metabolism, Antigens, Differentiation, Myelomonocytic metabolism, Female, Galectins antagonists & inhibitors, Hepatitis A Virus Cellular Receptor 2 antagonists & inhibitors, Hepatitis A Virus Cellular Receptor 2 genetics, Hepatitis A Virus Cellular Receptor 2 metabolism, Interferon Type I genetics, Interferon Type I metabolism, Lactose pharmacology, Lactose toxicity, Liver parasitology, Lung metabolism, Macrophages, Peritoneal immunology, Macrophages, Peritoneal metabolism, Macrophages, Peritoneal ultrastructure, Malaria blood, Mice, Plasmodium berghei growth & development, Pseudopodia ultrastructure, RNA, Messenger biosynthesis, RNA, Messenger genetics, Receptors, Immunologic biosynthesis, Receptors, Immunologic genetics, Triggering Receptor Expressed on Myeloid Cells-1 biosynthesis, Triggering Receptor Expressed on Myeloid Cells-1 genetics, Erythrocytes parasitology, Galectins physiology, Liver pathology, Malaria pathology, Parasitemia pathology
- Abstract
Hepatopathy is frequently observed in patients with severe malaria but its pathogenesis remains unclear. Galectins are evolutionarily conserved glycan-binding proteins with pleiotropic roles in innate and adaptive immune responses, and exhibit pivotal roles during Plasmodium spp. infection. Here, we analyzed the impact of blockage of galectin-receptor interactions by treatment with alpha (α)-lactose on liver immunopathology during the erythrocytic stage of malaria in mice infected with Plasmodium berghei ANKA ( Pb ANKA). Our results found that compared with Pb ANKA-infected mice (malarial mice), blockage of galectin-receptor interactions led to decreased host survival rate and increased peripheral blood parasitemia; exacerbated liver pathology, increased numbers of CD68
+ macrophages and apoptotic cells, and increased parasite burden in the livers on days 5 and 7 post infection (p.i.) as well as increased mRNA expression levels of galectin-9 (Gal-9) and its receptor, the T cell immunoglobulin domain and mucin domain protein 3 (Tim-3), interferon (IFN)α, IFNγ, and the triggering receptor expressed on myeloid cells (TREM)-1 in the livers or spleens of Pb ANKA-infected mice on day 7 p.i. Observed by transmission electron microscopy, the peritoneal macrophages isolated from malarial mice with α-lactose treatment had more pseudopodia than those from malarial mice. Measured by using quantitative real-time reverse transcription-polymerase chain reaction assay, the mRNA expression levels of Gal-9, IFNα, IFNβ, IFNγ, and TREM-1 were increased in the peritoneal macrophages isolated from malarial mice with α-lactose treatment in comparison of those from malarial mice. Furthermore, significant positive correlations existed between the mRNA levels of Gal-9 and Tim-3/IFNγ/TREM-1 in both the livers and the peritoneal macrophages, and between Gal-9 and Tim-3/TREM-1 in the spleens of malarial mice; significant positive correlations existed between the mRNA levels of Gal-9 and IFNγ in the livers and between Gal-9 and IFNα in the peritoneal macrophages from malarial mice treated with α-lactose. Our data suggest a potential role of galectin-receptor interactions in limiting liver inflammatory response and parasite proliferation by down-regulating the expressions of IFNα, IFNγ, and TREM-1 during Pb ANKA infection., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2021 Wu, Huang, Xiao, He and Lu.)- Published
- 2021
- Full Text
- View/download PDF