1. Personalized surveillance for hepatocellular carcinoma in cirrhosis - using machine learning adapted to HCV status.
- Author
-
Audureau E, Carrat F, Layese R, Cagnot C, Asselah T, Guyader D, Larrey D, De Lédinghen V, Ouzan D, Zoulim F, Roulot D, Tran A, Bronowicki JP, Zarski JP, Riachi G, Calès P, Péron JM, Alric L, Bourlière M, Mathurin P, Blanc JF, Abergel A, Chazouillères O, Mallat A, Grangé JD, Attali P, d'Alteroche L, Wartelle C, Dao T, Thabut D, Pilette C, Silvain C, Christidis C, Nguyen-Khac E, Bernard-Chabert B, Zucman D, Di Martino V, Sutton A, Pol S, and Nahon P
- Subjects
- Antiviral Agents therapeutic use, Cost-Benefit Analysis, Female, France epidemiology, Hepatitis C drug therapy, Hepatitis C epidemiology, Humans, Machine Learning, Male, Middle Aged, Prognosis, Risk Assessment economics, Risk Assessment methods, Sentinel Surveillance, Carcinoma, Hepatocellular diagnosis, Carcinoma, Hepatocellular epidemiology, Carcinoma, Hepatocellular etiology, Clinical Decision Rules, Hepatitis C complications, Liver Cirrhosis diagnostic imaging, Liver Cirrhosis epidemiology, Liver Cirrhosis etiology, Liver Neoplasms diagnosis, Liver Neoplasms epidemiology, Liver Neoplasms etiology
- Abstract
Background & Aims: Refining hepatocellular carcinoma (HCC) surveillance programs requires improved individual risk prediction. Thus, we aimed to develop algorithms based on machine learning approaches to predict the risk of HCC more accurately in patients with HCV-related cirrhosis, according to their virological status., Methods: Patients with compensated biopsy-proven HCV-related cirrhosis from the French ANRS CO12 CirVir cohort were included in a semi-annual HCC surveillance program. Three prognostic models for HCC occurrence were built, using (i) Fine-Gray regression as a benchmark, (ii) single decision tree (DT), and (iii) random survival forest for competing risks survival (RSF). Model performance was evaluated from C-indexes validated externally in the ANRS CO22 Hepather cohort (n = 668 enrolled between 08/2012-01/2014)., Results: Out of 836 patients analyzed, 156 (19%) developed HCC and 434 (52%) achieved sustained virological response (SVR) (median follow-up 63 months). Fine-Gray regression models identified 6 independent predictors of HCC occurrence in patients before SVR (past excessive alcohol intake, genotype 1, elevated AFP and GGT, low platelet count and albuminemia) and 3 in patients after SVR (elevated AST, low platelet count and shorter prothrombin time). DT analysis confirmed these associations but revealed more complex interactions, yielding 8 patient groups with varying cancer risks and predictors depending on SVR achievement. On RSF analysis, the most important predictors of HCC varied by SVR status (non-SVR: platelet count, GGT, AFP and albuminemia; SVR: prothrombin time, ALT, age and platelet count). Externally validated C-indexes before/after SVR were 0.64/0.64 [Fine-Gray], 0.60/62 [DT] and 0.71/0.70 [RSF]., Conclusions: Risk factors for hepatocarcinogenesis differ according to SVR status. Machine learning algorithms can refine HCC risk assessment by revealing complex interactions between cancer predictors. Such approaches could be used to develop more cost-effective tailored surveillance programs., Lay Summary: Patients with HCV-related cirrhosis must be included in liver cancer surveillance programs, which rely on ultrasound examination every 6 months. Hepatocellular carcinoma (HCC) screening is hampered by sensitivity issues, leading to late cancer diagnoses in a substantial number of patients. Refining surveillance periodicity and modality using more sophisticated imaging techniques such as MRI may only be cost-effective in patients with the highest HCC incidence. Herein, we demonstrate how machine learning algorithms (i.e. data-driven mathematical models to make predictions or decisions), can refine individualized risk prediction., Competing Interests: Conflict of interest Dr. Nahon has received honoraria from and/or consults for Abbvie, AstraZeneca, Bayer, Bristol-Myers Squibb, Eisai, Gilead, Ipsen, MSD, Roche. He received research grants from Abbvie and Bristol-Myers Squibb. Dr. Pol consults for and has received grants from Bristol-Myers Squibb, Gilead, Roche, and MSD. He consults for Gilead, Bristol-Myers Squibb, Boehringer Ingelheim, Janssen, Abbvie, Roche and MSD. Dr. Guyader has received honoraria and/or grants from Abbvie, Gilead, Janssen and MSD. Please refer to the accompanying ICMJE disclosure forms for further details., (Copyright © 2020 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF