1. Node Multi-Attribute Network Community Healthcare Detection Based on Graphical Matrix Factorization.
- Author
-
Alferaidi, Ali, Yadav, Kusum, Yasmeen, Safia, Alharbi, Yasser, Viriyasitavat, Wattana, Dhiman, Gaurav, and Kaur, Amandeep
- Subjects
MATRIX decomposition ,INFORMATION networks ,COLLABORATIVE learning ,LOCAL mass media ,SOCIAL networks ,VIRTUAL communities - Abstract
The significance of community structure in complex networks, such as social, biological, and online networks, has been widely recognized. Detecting communities in social media networks typically relies on two sources of information: the network's topological structure and node attributes. Incorporating rich node content attribute information poses both flexibility and challenges for community detection. Traditional approaches either focus on mining one information source or linearly combining results from both sources, which fails to effectively fuse the information. This paper introduces a practical collaborative learning approach that explores the multi-dimensional attribute characteristics of nodes to facilitate community division. By leveraging graphical matrix decomposition, the proposed algorithm, CDGMF, improves the effectiveness and robustness of community detection. Experimental results demonstrate the method's ability to effectively utilize node attribute information for guiding community detection, resulting in higher-quality community divisions. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF