1. Super-enhancer-based identification of a BATF3/IL-2R-module reveals vulnerabilities in anaplastic large cell lymphoma.
- Author
-
Liang HC, Costanza M, Prutsch N, Zimmerman MW, Gurnhofer E, Montes-Mojarro IA, Abraham BJ, Prokoph N, Stoiber S, Tangermann S, Lobello C, Oppelt J, Anagnostopoulos I, Hielscher T, Pervez S, Klapper W, Zammarchi F, Silva DA, Garcia KC, Baker D, Janz M, Schleussner N, Fend F, Pospíšilová Š, Janiková A, Wallwitz J, Stoiber D, Simonitsch-Klupp I, Cerroni L, Pileri S, de Leval L, Sibon D, Fataccioli V, Gaulard P, Assaf C, Knörr F, Damm-Welk C, Woessmann W, Turner SD, Look AT, Mathas S, Kenner L, and Merkel O
- Subjects
- Animals, Basic-Leucine Zipper Transcription Factors metabolism, Cell Line, Tumor, Cell Proliferation drug effects, Cell Survival drug effects, Gene Expression Regulation, Neoplastic, Humans, Immunoconjugates pharmacology, Interleukin-15 pharmacology, Interleukin-2 pharmacology, Interleukin-2 Receptor alpha Subunit genetics, Interleukin-2 Receptor alpha Subunit immunology, Interleukin-2 Receptor alpha Subunit metabolism, Ki-1 Antigen genetics, Ki-1 Antigen metabolism, Lymphoma, Large-Cell, Anaplastic drug therapy, Lymphoma, Large-Cell, Anaplastic metabolism, Lymphoma, Large-Cell, Anaplastic pathology, Mice, Receptors, Interleukin-2 immunology, Receptors, Interleukin-2 metabolism, Regulatory Sequences, Nucleic Acid, Repressor Proteins metabolism, Signal Transduction drug effects, Xenograft Model Antitumor Assays, Basic-Leucine Zipper Transcription Factors genetics, Lymphoma, Large-Cell, Anaplastic genetics, Receptors, Interleukin-2 genetics, Repressor Proteins genetics
- Abstract
Anaplastic large cell lymphoma (ALCL), an aggressive CD30-positive T-cell lymphoma, comprises systemic anaplastic lymphoma kinase (ALK)-positive, and ALK-negative, primary cutaneous and breast implant-associated ALCL. Prognosis of some ALCL subgroups is still unsatisfactory, and already in second line effective treatment options are lacking. To identify genes defining ALCL cell state and dependencies, we here characterize super-enhancer regions by genome-wide H3K27ac ChIP-seq. In addition to known ALCL key regulators, the AP-1-member BATF3 and IL-2 receptor (IL2R)-components are among the top hits. Specific and high-level IL2R expression in ALCL correlates with BATF3 expression. Confirming a regulatory link, IL-2R-expression decreases following BATF3 knockout, and BATF3 is recruited to IL2R regulatory regions. Functionally, IL-2, IL-15 and Neo-2/15, a hyper-stable IL-2/IL-15 mimic, accelerate ALCL growth and activate STAT1, STAT5 and ERK1/2. In line, strong IL-2Rα-expression in ALCL patients is linked to more aggressive clinical presentation. Finally, an IL-2Rα-targeting antibody-drug conjugate efficiently kills ALCL cells in vitro and in vivo. Our results highlight the importance of the BATF3/IL-2R-module for ALCL biology and identify IL-2Rα-targeting as a promising treatment strategy for ALCL., (© 2021. The Author(s).)
- Published
- 2021
- Full Text
- View/download PDF