1. DEEP LEARNING-BASED IRAQI BANKNOTES CLASSIFICATION SYSTEM FOR BLIND PEOPLE.
- Author
-
Awad, Sohaib Rajab, Sharef, Baraa T., Salih, Abdulkreem M., and Malallah, Fahad Layth
- Subjects
COMPUTER vision ,CONVOLUTIONAL neural networks ,PEOPLE with visual disabilities ,MACHINE learning ,DEEP learning ,HUMAN-computer interaction - Abstract
Modern systems have been focusing on improving the quality of life for people. Hence, new technologies and systems are currently utilized extensively in different sectors of our societies, such as education and medicine. One of the medical applications is using computer vision technology to help blind people in their daily endeavors and reduce their frequent dependence on their close people and also create a state of independence for visually impaired people in conducting daily financial operations. Motivated by this fact, the work concentrates on assisting the visually impaired to distinguish among Iraqi banknotes. In essence, we employ computer vision in conjunction with Deep Learning algorithms to build a multiclass classification model for classifying the banknotes. This system will produce specific vocal commands that are equivalent to the categorized banknote image, and then inform the visually impaired people of the denomination of each banknote. To classify the Iraqi banknotes, it is important to know that they have two sides: the Arabic side and the English side, which is considered one of the important issues for human-computer interaction (HCI) in constructing the classification model. In this paper, we use a database, which comprises 3,961 image samples of the seven Iraqi paper currency categories. Furthermore, a nineteen layers Convolutional Neural Network (CNN) is trained using this database in order to distinguish among the denominations of the banknotes. Finally, the developed system has exhibited an accuracy of 98.6 %, which proves the feasibility of the proposed model. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF