1. Reinforce Data, Multiply Impact: Improved Model Accuracy and Robustness with Dataset Reinforcement
- Author
-
Faghri, Fartash, Pouransari, Hadi, Mehta, Sachin, Farajtabar, Mehrdad, Farhadi, Ali, Rastegari, Mohammad, and Tuzel, Oncel
- Subjects
FOS: Computer and information sciences ,Computer Science - Machine Learning ,Artificial Intelligence (cs.AI) ,Computer Science - Artificial Intelligence ,Computer Vision and Pattern Recognition (cs.CV) ,Computer Science - Computer Vision and Pattern Recognition ,Machine Learning (cs.LG) - Abstract
We propose Dataset Reinforcement, a strategy to improve a dataset once such that the accuracy of any model architecture trained on the reinforced dataset is improved at no additional training cost for users. We propose a Dataset Reinforcement strategy based on data augmentation and knowledge distillation. Our generic strategy is designed based on extensive analysis across CNN- and transformer-based models and performing large-scale study of distillation with state-of-the-art models with various data augmentations. We create a reinforced version of the ImageNet training dataset, called ImageNet+, as well as reinforced datasets CIFAR-100+, Flowers-102+, and Food-101+. Models trained with ImageNet+ are more accurate, robust, and calibrated, and transfer well to downstream tasks (e.g., segmentation and detection). As an example, the accuracy of ResNet-50 improves by 1.7% on the ImageNet validation set, 3.5% on ImageNetV2, and 10.0% on ImageNet-R. Expected Calibration Error (ECE) on the ImageNet validation set is also reduced by 9.9%. Using this backbone with Mask-RCNN for object detection on MS-COCO, the mean average precision improves by 0.8%. We reach similar gains for MobileNets, ViTs, and Swin-Transformers. For MobileNetV3 and Swin-Tiny we observe significant improvements on ImageNet-R/A/C of up to 10% improved robustness. Models pretrained on ImageNet+ and fine-tuned on CIFAR-100+, Flowers-102+, and Food-101+, reach up to 3.4% improved accuracy.
- Published
- 2023