1. Taxonomy-Structured Domain Adaptation
- Author
-
Liu, Tianyi, Xu, Zihao, He, Hao, Hao, Guang-Yuan, Lee, Guang-He, and Wang, Hao
- Subjects
FOS: Computer and information sciences ,Computer Science - Machine Learning ,Artificial Intelligence (cs.AI) ,Computer Science - Artificial Intelligence ,Computer Vision and Pattern Recognition (cs.CV) ,Computer Science - Computer Vision and Pattern Recognition ,Machine Learning (cs.LG) - Abstract
Domain adaptation aims to mitigate distribution shifts among different domains. However, traditional formulations are mostly limited to categorical domains, greatly simplifying nuanced domain relationships in the real world. In this work, we tackle a generalization with taxonomy-structured domains, which formalizes domains with nested, hierarchical similarity structures such as animal species and product catalogs. We build on the classic adversarial framework and introduce a novel taxonomist, which competes with the adversarial discriminator to preserve the taxonomy information. The equilibrium recovers the classic adversarial domain adaptation's solution if given a non-informative domain taxonomy (e.g., a flat taxonomy where all leaf nodes connect to the root node) while yielding non-trivial results with other taxonomies. Empirically, our method achieves state-of-the-art performance on both synthetic and real-world datasets with successful adaptation. Code is available at https://github.com/Wang-ML-Lab/TSDA., Accepted by ICML 2023
- Published
- 2023