1. Basis Pursuit Denoise With Nonsmooth Constraints
- Author
-
Robert Baraldi, Rajiv Kumar, and Aleksandr Y. Aravkin
- Subjects
FOS: Computer and information sciences ,65K05, 65K10, 86-08 ,Noise reduction ,Gaussian ,FOS: Physical sciences ,Machine Learning (stat.ML) ,Basis pursuit ,02 engineering and technology ,Matrix decomposition ,Data modeling ,Physics - Geophysics ,symbols.namesake ,Statistics - Machine Learning ,FOS: Mathematics ,0202 electrical engineering, electronic engineering, information engineering ,Electrical and Electronic Engineering ,Mathematics - Optimization and Control ,Mathematics ,Matrix completion ,020206 networking & telecommunications ,Geophysics (physics.geo-ph) ,Optimization and Control (math.OC) ,Norm (mathematics) ,Signal Processing ,Outlier ,symbols ,Algorithm - Abstract
Level-set optimization formulations with data-driven constraints minimize a regularization functional subject to matching observations to a given error level. These formulations are widely used, particularly for matrix completion and sparsity promotion in data interpolation and denoising. The misfit level is typically measured in the l2 norm, or other smooth metrics. In this paper, we present a new flexible algorithmic framework that targets nonsmooth level-set constraints, including L1, Linf, and even L0 norms. These constraints give greater flexibility for modeling deviations in observation and denoising, and have significant impact on the solution. Measuring error in the L1 and L0 norms makes the result more robust to large outliers, while matching many observations exactly. We demonstrate the approach for basis pursuit denoise (BPDN) problems as well as for extensions of BPDN to matrix factorization, with applications to interpolation and denoising of 5D seismic data. The new methods are particularly promising for seismic applications, where the amplitude in the data varies significantly, and measurement noise in low-amplitude regions can wreak havoc for standard Gaussian error models., Comment: 11 pages, 10 figures
- Published
- 2019
- Full Text
- View/download PDF