1. Towards Uncovering the Role of Incomplete Penetrance in Maculopathies through Sequencing of 105 Disease-Associated Genes.
- Author
-
Hitti-Malin RJ, Panneman DM, Corradi Z, Boonen EGM, Astuti G, Dhaenens CM, Stöhr H, Weber BHF, Sharon D, Banin E, Karali M, Banfi S, Ben-Yosef T, Glavač D, Farrar GJ, Ayuso C, Liskova P, Dudakova L, Vajter M, Ołdak M, Szaflik JP, Matynia A, Gorin MB, Kämpjärvi K, Bauwens M, De Baere E, Hoyng CB, Li CHZ, Klaver CCW, Inglehearn CF, Fujinami K, Rivolta C, Allikmets R, Zernant J, Lee W, Podhajcer OL, Fakin A, Sajovic J, AlTalbishi A, Valeina S, Taurina G, Vincent AL, Roberts L, Ramesar R, Sartor G, Luppi E, Downes SM, van den Born LI, McLaren TL, De Roach JN, Lamey TM, Thompson JA, Chen FK, Tracewska AM, Kamakari S, Sallum JMF, Bolz HJ, Kayserili H, Roosing S, and Cremers FPM
- Subjects
- Humans, Mutation, Penetrance, Pedigree, Retina, Phenotype, ATP-Binding Cassette Transporters genetics, Eye Proteins, Cadherin Related Proteins, Nerve Tissue Proteins genetics, Macular Degeneration genetics
- Abstract
Inherited macular dystrophies (iMDs) are a group of genetic disorders, which affect the central region of the retina. To investigate the genetic basis of iMDs, we used single-molecule Molecular Inversion Probes to sequence 105 maculopathy-associated genes in 1352 patients diagnosed with iMDs. Within this cohort, 39.8% of patients were considered genetically explained by 460 different variants in 49 distinct genes of which 73 were novel variants, with some affecting splicing. The top five most frequent causative genes were ABCA4 (37.2%), PRPH2 (6.7%), CDHR1 (6.1%), PROM1 (4.3%) and RP1L1 (3.1%). Interestingly, variants with incomplete penetrance were revealed in almost one-third of patients considered solved (28.1%), and therefore, a proportion of patients may not be explained solely by the variants reported. This includes eight previously reported variants with incomplete penetrance in addition to CDHR1 :c.783G>A and CNGB3 :c.1208G>A. Notably, segregation analysis was not routinely performed for variant phasing-a limitation, which may also impact the overall diagnostic yield. The relatively high proportion of probands without any putative causal variant (60.2%) highlights the need to explore variants with incomplete penetrance, the potential modifiers of disease and the genetic overlap between iMDs and age-related macular degeneration. Our results provide valuable insights into the genetic landscape of iMDs and warrant future exploration to determine the involvement of other maculopathy genes.
- Published
- 2024
- Full Text
- View/download PDF