1. Evaluation of MR-safe bioptomes for MR-guided endomyocardial biopsy in minipigs: a potential radiation-free clinical approach.
- Author
-
Svetlove A, Ritter CO, Dullin C, Schmid M, Schauer S, Uihlein J, Uecker M, Mietsch M, Stadelmann C, Lotz J, and Unterberg-Buchwald C
- Subjects
- Animals, Humans, Swine, Swine, Miniature, Biopsy methods, Magnetic Resonance Spectroscopy, Heart diagnostic imaging, Magnetic Resonance Imaging
- Abstract
Background: Diagnostic accuracy of endomyocardial biopsy could improve if clinically safe magnetic resonance (MR)-compatible bioptomes were available. We explored two novel MR-compatible cardiac bioptomes for performance, safety, and clinical viability, employing in vivo minipig trials and phase-contrast synchrotron radiation computed microtomography (SRµCT)., Methods: Analysis of ex vivo obtained pig endomyocardial biopsies was performed using phase-contrast SRµCT and conventional two-dimensional histology. The technical performance was evaluated by measuring volume, inner and outer integrities, compression, and histological diagnostic value in 3 sets (6 per set) of biopsies for each experimental bioptome. The bioptomes were tested in vivo in 3 healthy minipigs per bioptome. The clinical feasibility was evaluated by procedural and cutting success as well as histological diagnostic value., Results: The bioptome with the 'grind-grind' design achieved similar values to control in compression (p = 0.822), inner (p = 0.628), and outer (p = 0.507), integrities ex vivo. It showed a better performance in the in vivo real-time MRI setting demonstrating a higher cutting success (91.7%) than the 'grind-anvil' (86.2%) design. In both ex vivo and in vivo evaluations, the 'grind-grind' design displayed sufficient diagnostic value (83% and 95%). The 'grind-anvil' design showed adequate diagnostic value both ex vivo and in vivo (78% and 87.5%) but was not comparable to control according to the three-dimensional (3D) analysis., Conclusion: A novel MR-compatible bioptome was identified as plausible in a clinical setting. Additionally, SRµCT and subsequent 3D structural analysis could be valuable in the label-free investigation of myocardial tissue at a micrometer level., Relevance Statement: Implementation of MR-guided biopsy can improve animal studies on structural myocardial changes at any point in an experimental setup. With further improvements in guiding catheters, MR-guided biopsy, using the new bioptome, has a potential to increase quality and diagnostic accuracy in patients both with structural and inflammatory cardiomyopathies., Key Points: • Novel MR-compatible bioptomes show promise for a clinical application. • SRµCT enabled detailed analysis of endomyocardial biopsies. • The bioptomes showed adequate in vivo performance without major complications., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF