1. Pre and Post Annealed Low Cost ZnO Nanorods on Seeded Substrate.
- Author
-
Nordin, M. N. and Ahmad Kamil, Wan Maryam Wan
- Subjects
- *
ZINC oxide , *SUBSTRATES (Materials science) , *NANORODS , *RADIO frequency , *MAGNETRON sputtering - Abstract
We wish to report the photonic band gap (where light is confined) in low cost ZnO nanorods created by twostep chemical bath deposition (CBD) method where the glass substrates were pre-treated with two different seeding thicknesses, 100 nm (sample a) and 150 nm (sample b), of ZnO using radio frequency magnetron sputtering. Then the samples were annealed at 600°C for 1 hour in air before and after immersed into the chemical solution for CBD process. To observe the presence of photonic band gap on the sample, UV-Visible-NIR spectrophotometer was utilized and showed that sample a and sample b both achieved wide band gap between 240 nm and 380 nm, within the UV range for typical ZnO, however sample b provided a better light confinement that may be attributed by the difference in average nanorods size. Field Emission Scanning Electron Microscope (FESEM) of the samples revealed better oriented nanorods uniformly scattered across the surface when substrates were coated with 100 nm of seeding layer whilst the 150 nm seeding sample showed a poor distribution of nanorods probably due to defects in the sample. Finally, the crystal structure of the ZnO crystallite is revealed by employing X-ray diffraction and both samples showed polycrystalline with hexagonal wurtzite structure that matched with JCPDS No. 36-1451. The 100 nm pre-seeded samples was recognized to have bigger average crystallite size, however sample b was suggested as having a higher crystalline quality. In conclusion, the sample b is recognized as a better candidate for future photonic applications due to its more apparent of photonic band gap and this may be contributed by more random distribution of the nanorods as observed in FESEM images as well as higher crystalline quality as suggested from XRD measurements. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF