6 results on '"Bertrand, Tanguy"'
Search Results
2. Wind and Turbulence Observations With the Mars Microphone on Perseverance.
- Author
-
Stott, Alexander E., Murdoch, Naomi, Gillier, Martin, Banfield, Don, Bertrand, Tanguy, Chide, Baptiste, De la Torre Juarez, Manuel, Hueso, Ricardo, Lorenz, Ralph, Martinez, German, Munguira, Asier, Mora Sotomayor, Luis, Navarro, Sara, Newman, Claire, Pilleri, Paolo, Pla‐Garcia, Jorge, Rodriguez‐Manfredi, Jose Antonio, Sanchez‐Lavega, Agustin, Smith, Michael, and Viudez Moreiras, Daniel
- Subjects
WIND speed ,MARS (Planet) ,KRIGING ,MICROPHONES ,TURBULENCE ,PRESSURE drop (Fluid dynamics) ,SOUND reverberation - Abstract
We utilize SuperCam's Mars microphone to provide information on wind speed and turbulence at high frequencies on Mars. To do so, we first demonstrate the sensitivity of the microphone signal level to wind speed, yielding a power law dependence. We then show the relationship between the microphone signal level and pressure, air and ground temperatures. A calibration function is constructed using Gaussian process regression (a machine learning technique) taking the microphone signal and air temperature as inputs to produce an estimate of the wind speed. This provides a high rate wind speed estimate on Mars, with a sample every 0.01 s. As a result, we determine the fast fluctuations of the wind at Jezero crater which highlights the nature of wind gusts over the Martian day. To analyze the turbulent behavior of this wind speed estimate, we calculate its normalized standard deviation, known as gustiness. To characterize the behavior of this high frequency turbulent intensity at Jezero crater, correlations are shown between the evaluated gustiness statistic and pressure drop rates/sizes, temperature and energy fluxes. This has implications for future atmospheric models on Mars, taking into account turbulence at the finest scales. Plain Language Summary: The NASA Perseverance mission sent microphones to the surface of Mars. This microphone has recorded signals due to the wind. We examine how these recorded signals vary with other sensor data from Perseverance, which shows a link between the microphone signal, the dedicated wind speed sensor and air temperature. Based on this finding, we develop a way to predict the wind speed from the microphone data using a machine learning technique. The microphone records data at a very high rate compared with sensors so far sent to Mars. This means that the wind speed predicted from the microphone data can be used to study the chaotic and variable wind behavior on Mars to a level never seen before. We show that this chaotic and variable behavior has links to temperature and the number of whirlwinds observed. This will lead us to better weather models for Mars. Key Points: Wind‐induced noise is observed by the SuperCam Mars microphone on PerseveranceMicrophone and air temperature data are used to estimate the wind speed at high frequencies, using a machine learning modelThe wind speed estimate is used to examine the relationships between turbulent intensity, pressure drops, temperature, and energy flux [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
3. Compositionally and density stratified igneous terrain in Jezero crater, Mars
- Author
-
Wiens, Roger C., Udry, Arya, Beyssac, Olivier, Quantin-Nataf, Cathy, Mangold, Nicolas, Cousin, Agnès, Mandon, Lucia, Bosak, Tanja, Forni, Olivier, McLennan, Scott M., Sautter, Violaine, Brown, Adrian, Benzerara, Karim, Johnson, Jeffrey R., Mayhew, Lisa, Maurice, Sylvestre, Anderson, Ryan B., Clegg, Samuel M., Crumpler, Larry, Gabriel, Travis S. J., Gasda, Patrick, Hall, James, Horgan, Briony H. N., Kah, Linda, Legett, Carey, Madariaga, Juan Manuel, Meslin, Pierre-Yves, Ollila, Ann M., Poulet, Francois, Royer, Clement, Sharma, Shiv K., Siljeström, Sandra, Simon, Justin I., Acosta-Maeda, Tayro E., Alvarez-Llamas, Cesar, Angel, S. Michael, Arana, Gorka, Beck, Pierre, Bernard, Sylvain, Bertrand, Tanguy, Bousquet, Bruno, Castro, Kepa, Chide, Baptiste, Clavé, Elise, Cloutis, Ed, Connell, Stephanie, Dehouck, Erwin, Dromart, Gilles, Fischer, Woodward, Fouchet, Thierry, Francis, Raymond, Frydenvang, Jens, Gasnault, Olivier, Gibbons, Erin, Gupta, Sanjeev, Hausrath, Elisabeth M., Jacob, Xavier, Kalucha, Hemani, Kelly, Evan, Knutsen, Elise, Lanza, Nina, Laserna, Javier, Lasue, Jeremie, Le Mouélic, Stéphane, Leveille, Richard, Lopez Reyes, Guillermo, Lorenz, Ralph, Manrique, Jose Antonio, Martinez-Frias, Jesus, McConnochie, Tim, Melikechi, Noureddine, Mimoun, David, Montmessin, Franck, Moros, Javier, Murdoch, Naomi, Pilleri, Paolo, Pilorget, Cedric, Pinet, Patrick, Rapin, William, Rull, Fernando, Schröder, Susanne, Shuster, David L., Smith, Rebecca J., Stott, Alexander E., Tarnas, Jesse, Turenne, Nathalie, Veneranda, Marco, Vogt, David S., Weiss, Benjamin P., Willis, Peter, Stack, Kathryn M., Williford, Kenneth H., Farley, Kenneth A., Los Alamos National Laboratory (LANL), University of Nevada [Las Vegas] (WGU Nevada), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Planétologie et Géosciences [UMR_C 6112] (LPG), Université d'Angers (UA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST), Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Department of Earth, Atmospheric and Planetary Sciences [MIT, Cambridge] (EAPS), Massachusetts Institute of Technology (MIT), Stony Brook University [SUNY] (SBU), State University of New York (SUNY), Plancius Research LLC, Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), Department of Geological Sciences [Boulder], University of Colorado [Boulder], Astrogeology Science Center [Flagstaff], United States Geological Survey [Reston] (USGS), New Mexico Museum of Natural History and Science (NMMNHS), Department of Earth, Atmospheric, and Planetary Sciences [West Lafayette] (EAPS), Purdue University [West Lafayette], Department of Earth and Planetary Sciences [Knoxville], The University of Tennessee [Knoxville], University of the Basque Country/Euskal Herriko Unibertsitatea (UPV/EHU), Institut d'astrophysique spatiale (IAS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), University of Hawai'i [Honolulu] (UH), RISE Research Institutes of Sweden, Center for Isotope Cosmochemistry and Geochronology, NASA Johnson Space, Universidad de Málaga [Málaga] = University of Málaga [Málaga], Department of Chemistry and Biochemistry [Columbia, South Carolina], University of South Carolina [Columbia], Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, Centre d'Etudes Lasers Intenses et Applications (CELIA), Université de Bordeaux (UB)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), University of Winnipeg, California Institute of Technology (CALTECH), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), University of Copenhagen = Københavns Universitet (UCPH), McGill University = Université McGill [Montréal, Canada], Department of Earth Science and Engineering [Imperial College London], Imperial College London, Institut de mécanique des fluides de Toulouse (IMFT), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Universidad de Valladolid [Valladolid] (UVa), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), University of Maryland [College Park], University of Maryland System, Department of Physics and Applied Physics [Lowell], University of Massachusetts [Lowell] (UMass Lowell), University of Massachusetts System (UMASS)-University of Massachusetts System (UMASS), Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), DLR Institute of Optical Sensor Systems, Deutsches Zentrum für Luft- und Raumfahrt [Berlin] (DLR), Department of Earth and Planetary Science [UC Berkeley] (EPS), University of California [Berkeley] (UC Berkeley), and University of California (UC)-University of California (UC)
- Subjects
emplacement ,LIBS ,shergottites ,Multidisciplinary ,Mars2020 ,Mars ,Perseverance ,system ,rocks ,reflectance spectra ,Vis ,in-situ ,SuperCam ,[SDU]Sciences of the Universe [physics] ,rover ,IR ,origin ,surface ,identification ,Raman ,olivine - Abstract
Before Perseverance, Jezero crater's floor was variably hypothesized to have a lacustrine, lava, volcanic airfall, or aeolian origin. SuperCam observations in the first 286 Mars days on Mars revealed a volcanic and intrusive terrain with compositional and density stratification.The dominant lithology along the traverse is basaltic, with plagioclase enrichment in stratigraphically higher locations. Stratigraphically lower, layered rocks are richer in normative pyroxene. The lowest observed unit has the highest inferred density and is olivine-rich with coarse (1.5 millimeters) euhedral, relatively unweathered grains, suggesting a cumulate origin. This is the first martian cumulate and shows similarities to martian meteorites, which also express olivine disequilibrium. Alteration materials including carbonates, sulfates, perchlorates, hydrated silicates, and iron oxides are pervasive but low in abundance, suggesting relatively brief lacustrine conditions. Orbital observations link the Jezero floor lithology to the broader Nili-Syrtis region, suggesting that density-driven compositional stratification is a regional characteristic. Funding was provided by the following sources: NASA's Mars exploration program, including contracts NNH15AZ24I and NNH13ZDA018O to LANL. LANL LDRD code XWHW contributed to calibrations. A portion of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). NASA RSSPS grants supported J.I.S., grantnumber 80NSSC20K0239 supported L. Hausrath, grant number 80NSSC20K0240 supported L. Mayhew, and grant number 80NSSC21K0330 supported A.U. CNRS and CNES supported the work in France. DLR supported S.Sc. and D.S.V. The Swedish National Space Agency (contracts 137/19 and 2021-00092) supported S.Si. The Natural Sciences and Engineering Research Council of Canada (NSERC) and the Canadian Space Agency (CSA) supported E.C., S.C., and N.T. The Ministry of Economy and Competitiveness (MINECO, SPAIN) grant PID2019-107442RB-C31 supported F.R., G.L.R., J.A.M., and M.
- Published
- 2022
- Full Text
- View/download PDF
4. The MARs Boundary Layer LIDAR (MARBLL) observation strategies and corresponding performance predictions
- Author
-
Déprez, Grégoire, Montmessin, Franck, Bruneau, Didier, Bertrand, Tanguy, Forget, François, Spiga, Aymeric, PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École des Ponts ParisTech (ENPC)-École polytechnique (X)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), and Cardon, Catherine
- Subjects
MARs Boundary Layer LIDAR ,MARBLL Instrument ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,[SDU.ASTR.EP] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,MARS ,Martian Wind ,Wind Speed ,Martian Lidar ,Aerosol ,Physics::Atmospheric and Oceanic Physics - Abstract
International audience; The MARBLL instrument is the first Martian LIDAR concept providing simultaneous wind speed and aerosol density measurements. Its design, validated with a prototype, relies on a Mach-Zehnder interferometer as well as on the laser inherited from the ChemCam instrument. Whereas the aerosol density profile is classically determined by measuring the amount of backscattered light along the line of sight (LOS), the wind speed measurement uses the Doppler shift created by the velocity of the particles along this LOS. Its performances for a Martian configuration have been simulated. Because, the lidar is only able to measure the wind-speed projected along the line of sight, various observation strategies have been tested. Whereas the vertical sounding allows the direct determination of altitude profiles of aerosols and vertical wind-speed, the measurement of the horizontal wind vector requires specific techniques. The "conical scan" that has been tested consists in sounding the envelope of a cone with the laser, shooting at a given elevation (typically 45) for a selected range of azimuths. The vertical and horizontal wind speed at every altitude can then be deconvolved by fitting a sinusoid on the azimuthal data. The same method can be used at low elevations, for a high vertical resolution measurement near the surface. Eventually, the instrument performances have been predicted using two models. On the one hand, an end-to-end instrument model, describing the whole optical line, interferometer and electronics noises and performances, enabling us the obtain the signal-to-noise ratio (SNR) for each shot as well as the one-sigma error expected for the LOS wind-speed measurement at a given altitude. On the other hand, the Large-Eddy Simulation (LES) model developed at Laboratoire de Météorologie Dynamique, is used to set up the actual measured LOS wind-speed resulting from the combination of the project wind vector components along the lidar LOS. The error on the aerosol density measurement is easily obtained thanks to the SNR whereas the one-sigma error on horizontal and/or vertical wind speed for a given measurement strategy is then determined by propagating the LOS one-sigma error through the employed method (directly for the vertical shot, and through least square fits for the conical scan). A Monte-Carlo method is then used with time, space and observation parameters (the simulated measurement is done at various start times, positions in the simulation box and starting azimuths) in order to finally compute the one-sigma error for one measurement strategy, with a particular set of parameters, therefore allowing us to choose the optimal ones for the instrument design.
- Published
- 2014
5. Measurements of sound propagation in Mars' lower atmosphere.
- Author
-
Chide, Baptiste, Jacob, Xavier, Petculescu, Andi, Lorenz, Ralph D., Maurice, Sylvestre, Seel, Fabian, Schröder, Susanne, Wiens, Roger C., Gillier, Martin, Murdoch, Naomi, Lanza, Nina L., Bertrand, Tanguy, Leighton, Timothy G., Joseph, Phillip, Pilleri, Paolo, Mimoun, David, Stott, Alexander, de la Torre Juarez, Manuel, Hueso, Ricardo, and Munguira, Asier
- Subjects
- *
ATMOSPHERIC boundary layer , *ACOUSTIC wave propagation , *ATMOSPHERIC carbon dioxide , *SOUND measurement , *ACOUSTICS , *MARS (Planet) , *ATMOSPHERIC acoustics , *ABSORPTION of sound - Abstract
Acoustics has become extraterrestrial and Mars provides a new natural laboratory for testing sound propagation models compared to those ones on Earth. Owing to the unique combination of a microphone and two sound sources, the Ingenuity helicopter and the SuperCam laser-induced sparks, the Mars 2020 Perseverance rover payload enables the in situ characterization of unique sound propagation properties of the low-pressure CO 2 -dominated Mars atmosphere. In this study, we show that atmospheric turbulence is responsible for a large variability in the sound amplitudes from laser-induced sparks. This variability follows the diurnal pattern of turbulence. In addition, acoustic measurements acquired over one Martian year reveal a variation of the sound intensity by a factor of 1.8 from a constant source due to the seasonal cycle of pressure and temperature that significantly modifies the acoustic impedance and shock-wave formation. Finally, we show that the evolution of the Ingenuity tones and laser spark amplitudes with distance is consistent with one of the existing sound absorption models, which is a key parameter for numerical simulations applied to geophysical experiments on CO 2 -rich atmospheres. Overall, these results demonstrate the potential of sound propagation to interrogate the Mars environment and will therefore help in the design of future acoustic-based experiments for Mars or other planetary atmospheres such as Venus and Titan. • A microphone and two sound sources are used to study sound propagation on Mars. • Atmospheric turbulence scatters the acoustic signals recorded on Mars. • The amplitude scattering follows the daytime turbulence pattern. • Sounds intensity varies by a factor of 1.8 over a Martian year. • The sound amplitude evolution with distance matches with the sound attenuation model. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
6. Modeling the "B" regional dust storm on Mars: Dust lofting mechanisms predicted by the new NASA Ames Mars GCM.
- Author
-
Batterson, Courtney M.L., Kahre, Melinda A., Bridger, Alison F.C., Wilson, R. John, Urata, Richard A., and Bertrand, Tanguy
- Subjects
- *
DUST storms , *CLIMATE change models , *MARS (Planet) , *MIDDLE atmosphere , *STORMS , *ICE caps - Abstract
During years in which Mars does not experience a Global Dust Storm, the Thermal Emission Spectrometer (TES) instrument on Mars Global Surveyor (MGS) and the Mars Climate Sounder (MCS) instrument on Mars Reconnaissance Orbiter (MRO) have observed three annually-recurring regional-scale dust storms that occur in the southern hemisphere during southern spring and summer. These storms produce dust extinctions in excess of 10−3 km−1 and increase temperatures to over 200 K in the middle atmosphere (50 Pa, or ∼ 25 km). Whereas the first and last storms in the occurrence are located in the middle latitudes, the second storm, known as the "B" storm, is confined to the south pole over the receding CO 2 ice cap. In this work, we reproduce the "B" storm in the new NASA Ames Mars Global Climate Model (MGCM), and we use our simulation to investigate the mechanisms lofting dust into the middle atmosphere during the storm. We find that a series of semi-regular dust pluming events that occur poleward of 70° S loft dust to and above 50 Pa during the "B" storm. These plumes share some characteristics with rocket dust storms and often produce detached dust layers whose subsequent evolution resembles the solar escalator effect. • The "B" regional dust storm is reproducible in the NASA Ames Mars GCM. • Local-scale dust plumes loft dust above 50 Pa during the simulated "B" storm. • Dust radiative-dynamic feedbacks drive the pluming mechanism. • Elevated dust layers present in orbital observations may be consistent with plumes. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.