1. The Algebra of Compact-by-Approximable Operators on Banach Spaces
- Author
-
Henrik Wirzenius, University of Helsinki, Faculty of Science, Doctoral Programme in Mathematics and Statistics, Helsingin yliopisto, matemaattis-luonnontieteellinen tiedekunta, Matematiikan ja tilastotieteen tohtoriohjelma, Helsingfors universitet, matematisk-naturvetenskapliga fakulteten, Doktorandprogrammet i matematik och statistik, Laustsen, Niels, and Tylli, Hans-Olav
- Subjects
matematiikka - Abstract
This doctoral dissertation is devoted to the study of the quotient algebra of compact-by-approximable operators (the compact-by-approximable algebra) on Banach spaces and related quotient algebras of linear operators. The compact-by-approximable algebra is a radical Banach algebra that is non-trivial only within the class of Banach spaces failing the approximation property, and it has not been much studied prior to this thesis. The primary focus is on questions about size, closed ideals, and other structural properties of such quotient algebras. We also study non-classical approximation properties associated to explicit Banach operator ideals. In the first of four research articles included in the dissertation, we show that the compact-by-approximable algebra is large for many Banach spaces. In fact, there is a linear isomorphic embedding from the space of all null sequences of scalars into the compact-by-approximable algebra for various Banach spaces, including particular closed subspaces of classical sequence spaces and specific Banach spaces due to George Willis (1992) and William B. Johnson (1972). We also exhibit an example of a non-separable compact-by-approximable algebra. The second article studies closed ideals and related properties of the compact-by-approximable algebra. We exhibit various examples of Banach spaces for which the compact-by-approximable algebra carries explicit closed ideals, where many - but not all - of the ideals are induced by Banach operator ideals. We also discuss the existence of compact non-approximable operators between closed subspaces of classical sequence spaces. The first and second article are joint works with Hans-Olav Tylli. The compact-by-approximable algebra can be generalised by considering an analogous quotient algebra associated to a general Banach operator ideal and its approximative kernel. The third article investigates such a quotient algebra for two classes of Banach operator ideals; namely, for the class of quasi p-nuclear operators introduced by Arne Persson and Albrecht Pietsch (1969), and for the class of Sinha-Karn p-compact operators of Deba P. Sinha and Anil K. Karn (2002). Our focus here is on questions about size, nilpotency, and closed ideals. The results also yield new examples of closed ideals of the compact-by-approximable algebra. Some of the results in the second and third article involve non-classical approximation properties associated to Banach operator ideals. Such approximation properties were introduced by Eve Oja (2012) and they have recently been studied for various Banach operator ideals. The fourth article focuses on approximation properties related to the Banach operator ideals of unconditionally p-compact operators introduced by Ju Myung Kim (2014) and the aforementioned Sinha-Karn p-compact operators. For instance, we show that the respective approximation properties associated to unconditionally 1-compact operators and Sinha-Karn 1-compact operators are strictly weaker properties than the classical approximation property. All four research articles use various factorisation techniques for linear operators and results from Banach space theory. A comprehension of the constructions of various Banach spaces failing the approximation property is also essential for many of the results. This doctoral dissertation contributes to the branch of functional analysis in pure mathematics, and hopes to bring new insights towards a better understanding of the elusive gap between the compact operators and the bounded finite-rank operators on infinite-dimensional Banach spaces. Denna doktorsavhandling behandlar frågor om strukturen av kompakta operatorer på Banachrum som saknar approximationsegenskapen. Ämnesområdet tillhör funktionalanalysen som är en central gren inom den moderna matematiken. Avhandlingen studerar en specifik kvotalgebra som genereras av kollektionen av alla kompakta operatorer på ett Banachrum, där två kompakta operatorer associeras med samma element i kvotalgebran om deras differens är approximerbar. Här är en linjär operator approximerbar om den kan approximeras i operatornormen med en följd av begränsade operatorer med ändlig rang. Det primära fokuset ligger på frågor om storleken, existensen av specifika slutna ideal samt andra algebraiska strukturer av den ovannämnda kvotalgebran. Bland annat så visar vi att kvotalgebran har oändlig dimension för diverse klasser av Banachrum. Avhandlingen studerar även andra liknande kvotalgebror som genereras av specifika operatorideal, samt relaterade icke-klassiska approximationsegenskaper hos Banachrum. Gemensamt för de kvotalgebror som studeras är att de är icke-triviala endast inom klassen av Banachrum som saknar approximationsegenskapen. Doktorsavhandlingen består av en inledande sammanfattning och fyra vetenskapliga artiklar.
- Published
- 2022