1. Enhancing Luminescence and X-ray Absorption Capacity of Eu3+:LaF3 Nanoparticles by Bi3+ Codoping
- Author
-
María Moros, Jesús M. de la Fuente, Ana I. Becerro, Marcin Balcerzyk, Ariadna Corral, Daniel González Mancebo, Manuel Ocaña, Consejo Superior de Investigaciones Científicas (España), European Commission, Gobierno de Aragón, Siemens Healthcare, Balcerzyk, Marcin, González-Mancebo, Daniel, Balcerzyk, Marcin [0000-0001-6030-7416], and González-Mancebo, Daniel [0000-0003-4156-2918]
- Subjects
Materials science ,General Chemical Engineering ,Attenuation ,Analytical chemistry ,X-ray ,Nanoparticle ,General Chemistry ,Emission intensity ,lcsh:Chemistry ,lcsh:QD1-999 ,Absorption capacity ,Luminescence ,Excitation ,Order of magnitude - Abstract
Bi3+ codoping has been proposed in this work with a twofold objective, namely, enhancing the luminescence emission of Eu3+:LaF3 nanoparticles (NPs) and increasing their X-ray attenuation capacity, with the purpose of obtaining a bimodal bioprobe for luminescence bioimaging and X-ray computed tomography. The synthesis method, reported here for the first time for LaF3 particles, allowed obtaining uniform, nonaggregated NPs using a homogeneous precipitation in polyol medium at room temperature in just 2 h. The simplicity of the synthesis method allows the large-scale production of NPs. LaF3 NPs with different Eu3+ contents were first synthesized to find the critical Eu3+ concentration, producing the highest emission intensity. This concentration was subsequently used to fabricate Bi3+–Eu3+-codoped LaF3 NPs using the same method. The emission intensity of the codoped NPs increased in more than one order of magnitude, thanks to the possibility of excitation through the Bi3+ → Eu3+ energy-transfer band. The luminescence properties of the codoped NPs were analyzed in detail to find the mechanism responsible for the emission enhancement. Finally, it was demonstrated that the high atomic number of Bi3+, higher than that of lanthanides, was an added value of the material because it increased its X-ray attenuation capacity. In summary, the LaF3 NPs codoped with Eu3+ and Bi3+ presented in this work are promising candidates as a bimodal bioprobe for luminescence bioimaging and X-ray computed tomography., We gratefully acknowledge T.C. Rojas for help with TEM. This work was supported by CSIC projects (PIC2016FR1 and PIE201460E005), Fondo Social Europeo-Gobierno de Aragoń and by Siemens Healthcare S.L.U. We acknowledge the use of the CNA’s ICTS NanoCT facilities.
- Published
- 2019
- Full Text
- View/download PDF