1. One strategy for nanoparticle assembly onto 1D, 2D, and 3D polymer micro and nanostructures
- Author
-
Aurélie Broussier, Sylvie Marguet, Melissa Merheb, Renaud Bachelot, Irene Izquierdo, Ali Ihsan Issa, Safi Jradi, Dandan Ge, Nawres Ghabri, Christophe Couteau, Lumière, nanomatériaux et nanotechnologies (L2n), Université de Technologie de Troyes (UTT)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Edifices Nanométriques (LEDNA), Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie (ex SIS2M) (NIMBE UMR 3685), Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Key Laboratory of Advanced Display and System applications, Shanghai University, Conseil régional Grand Est, EUR-EIPHI Recherche, FEDER, ANR-15-CE24-0036,ACTIVE-NANOPHOT,Nouveaux nano émetteurs hybrides multicolores et multifonctionels(2015), ANR-10-BLAN-0716,CROSS-NANOMAT,Nanomatériaux Moléculaires Bistables(2010), ANR-18-EURE-0013,NANO-PHOT,Graduate School in Nano-optics and Nanophotonics(2018), Université de Technologie de Troyes (UTT), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut Rayonnement Matière de Saclay (IRAMIS), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
- Subjects
Materials science ,Nanostructure ,Nanophotonics ,Nanoparticle ,Nanotechnology ,quantum dots ,02 engineering and technology ,integration of nanoemitters ,010402 general chemistry ,01 natural sciences ,2-photon lithography ,3D assembly ,General Materials Science ,Plasmon ,chemistry.chemical_classification ,nanoparticles assembly ,Polymer ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,chemistry ,Colloidal gold ,Quantum dot ,gold nanoparticles ,Surface modification ,0210 nano-technology ,polymer functionalization - Abstract
International audience; The integration of nanoparticles (NPs) into photonic devices and plasmonic sensors requires selective patterning of these NPs with fine control of their size, shape, and spatial positioning. In this article, we report on a general strategy to pattern different types of NPs. This strategy involves the functionalization of photopolymers before their patterning by two-photon laser writing to fabricate micro- and nanostructures that selectively attract colloidal NPs with suitable ligands, allowing their precise immobilization and organization even within complex 3D structures. Monolayers of NPs without aggregations are obtained and the surface density of NPs on the polymer surface can be controlled by changing either the time of immersion in the colloidal solution or the type of amine molecule chemically grafted on the polymer surface. Different types of NPs (gold, silver, polystyrene, iron oxide, colloidal quantum dots, and nanodiamonds) of different sizes are introduced showing a potential toward nanophotonic applications. To validate the great potential of our method, we successfully demonstrate the integration of quantum dots within a gold nanocube with high spatial resolution and nanometer precision. The promise of this hybrid nanosource of light (plasmonic/polymer/QDs) as optical nanoswitch is illustrated through photoluminescence measurements under polarized exciting light.
- Published
- 2021
- Full Text
- View/download PDF