1. ORR performance evaluation of Al-substituted MnFe2O4/ reduced graphene oxide nanocomposite
- Author
-
Kamal K. Kar, Prerna Sinha, Iram Malik, Alekha Tyagi, Hiroyuki Yokoi, Yaswanth K. Penke, and Janakarajan Ramkumar
- Subjects
Materials science ,Renewable Energy, Sustainability and the Environment ,Graphene ,Oxide ,Energy Engineering and Power Technology ,02 engineering and technology ,Electrolyte ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Electrocatalyst ,01 natural sciences ,0104 chemical sciences ,law.invention ,chemistry.chemical_compound ,Fuel Technology ,Methanol poisoning ,chemistry ,Chemical engineering ,law ,Linear sweep voltammetry ,Reversible hydrogen electrode ,Cyclic voltammetry ,0210 nano-technology - Abstract
Active and durable oxygen reduction reaction (ORR) catalysts are of utmost importance to realize the commercialization of hydrogen fuel cells and metal-air batteries. Al-substituted MnFe2O4-based ternary oxide and reduced graphene oxide (MAF-RGO) nanocomposite is synthesized using an in-situ co-precipitation followed by a hydrothermal process and verified for ORR electrocatalysis in the alkaline electrolyte (0.1 M KOH). MAF-RGO is first analyzed using physicochemical characterization tools including X-ray diffraction, Raman spectroscopy, sorption studies, electron microscopy, X-ray photoelectron spectroscopy, etc. Further, the characteristic ORR peak centered at 0.56 V vs. reversible hydrogen electrode (RHE) in cyclic voltammetry (CV) studies confirms the electrocatalytic performance of MAF-RGO. The ORR onset potential of 0.92 V vs. RHE is obtained in linear sweep voltammetry (LSV) measurement at 1600 rpm in O2-saturated electrolyte exhibiting an improved ORR performance as compared to the commercial electrocatalyst. The reduction kinetics is observed to follow the desirable near 4-e- mechanism. In addition, the electrocatalyst exhibits improved relative current stability of 86% and methanol poisoning resistance of 82%, which is better in comparison to the standard Pt/C. The observed electrochemical performance results from the synergism between the oxygen vacancy-rich Al-substituted metallic oxide active species and the functional group enriched predominantly mesoporous RGO sheets with excellent electrical conductivity. The introduction of metallic species enhanced the inter-planar spacing between graphitic sheets easing the maneuver of reactant species through the electrocatalyst and accessing more ORR-active sites. This study establishes the potency of mixed transition metal oxide/nanocarbon composites as durable high-performance ORR-active systems.
- Published
- 2021
- Full Text
- View/download PDF