1. Highlighting the Dynamics of Graphene Protection toward the Oxidation of Copper Under Operando Conditions
- Author
-
Patrick Zeller, Matteo Amati, Nicolas Reckinger, Alexei Zakharov, Claudia Struzzi, Luca Gregoratti, and Mattia Scardamaglia
- Subjects
Materials science ,chemistry.chemical_element ,02 engineering and technology ,engineering.material ,010402 general chemistry ,01 natural sciences ,law.invention ,Corrosion ,Metal ,Coating ,X-ray photoelectron spectroscopy ,operando ,law ,General Materials Science ,corrosion ,Graphene ,Bilayer ,coating ,021001 nanoscience & nanotechnology ,Copper ,0104 chemical sciences ,Chemical engineering ,chemistry ,visual_art ,spectromicroscopy ,ambient-pressure XPS ,engineering ,visual_art.visual_art_medium ,Corrosion engineering ,0210 nano-technology - Abstract
We performed spatially resolved near-ambient-pressure photoemission spectromicroscopy on graphene-coated copper in operando under oxidation conditions in an oxygen atmosphere (0.1 mbar). We investigated regions with bare copper and areas covered with mono- and bi-layer graphene flakes, in isobaric and isothermal experiments. The key method in this work is the combination of spatial and chemical resolution of the scanning photoemission microscope operating in a near-ambient-pressure environment, thus allowing us to overcome both the material and pressure gap typical of standard ultrahigh-vacuum X-ray photoelectron spectroscopy (XPS) and to observe in operando the protection mechanism of graphene toward copper oxidation. The ability to perform spatially resolved XPS and imaging at high pressure allows for the first time a unique characterization of the oxidation phenomenon by means of photoelectron spectromicroscopy, pushing the limits of this technique from fundamental studies to real materials under working conditions. Although bare Cu oxidizes naturally at room temperature, our results demonstrate that such a graphene coating acts as an effective barrier to prevent copper oxidation at high temperatures (over 300 °C), until oxygen intercalation beneath graphene starts from boundaries and defects. We also show that bilayer flakes can protect at even higher temperatures. The protected metallic substrate, therefore, does not suffer corrosion, preserving its metallic characteristic, making this coating appealing for any application in an aggressive atmospheric environment at high temperatures.
- Published
- 2019
- Full Text
- View/download PDF