1. Approximation of functions in the generalized Zygmund class using Hausdorff means
- Author
-
M. L. Mittal, Billy E. Rhoades, and Mradul Veer Singh
- Subjects
Class (set theory) ,Pure mathematics ,40C05 ,01 natural sciences ,Omega ,Corollary ,Discrete Mathematics and Combinatorics ,42A10 ,0101 mathematics ,Trigonometric fourier series ,Fourier series ,Mathematics ,Mathematics::Functional Analysis ,Degree (graph theory) ,lcsh:Mathematics ,Research ,Applied Mathematics ,010102 general mathematics ,Mathematical analysis ,Hausdorff space ,Function (mathematics) ,lcsh:QA1-939 ,010101 applied mathematics ,trigonometric Fourier series ,Hausdorff means ,Zygmund class ,degree of approximation ,Analysis ,42A25 - Abstract
In this paper we investigate the degree of approximation of a function belonging to the generalized Zygmund class \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Z_{p}^{(\omega)}$\end{document}Zp(ω) (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p \ge1$\end{document}p≥1) by Hausdorff means of its Fourier series. We also deduce a corollary and mention a few applications of our main results.
- Published
- 2017
- Full Text
- View/download PDF