74 results on '"Carleman estimate"'
Search Results
2. Controllability aspects of the Korteweg–de Vries Burgers equation on unbounded domains.
- Author
-
Gallego, F.A.
- Subjects
- *
KORTEWEG-de Vries equation , *APPROXIMATION theory , *BAROTROPIC equation , *ASYMPTOTIC controllability , *MATHEMATICAL analysis - Abstract
The aim of this work is to consider the controllability problem of the linear system associated to Korteweg–de Vries Burgers equation posed in the whole real line. We obtain a sort of exact controllability for solutions in L l o c 2 ( R 2 ) by deriving an internal observability inequality and a Global Carleman estimate. Following the ideas contained in [25] , the problem is reduced to prove an approximate theorem. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
3. Boundary null-controllability of 1-D coupled parabolic systems with Kirchhoff-type conditions
- Author
-
Kuntal Bhandari, Víctor Hernández-Santamaría, Franck Boyer, Institut de Mathématiques de Toulouse UMR5219 (IMT), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1)-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), ANR-11-IDEX-0002-02/11-LABX-0040,CIMI,Centre International de Mathématiques et d’Informatique (de Toulouse)(2011), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Instituto de Matematicas [México], Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM), ANR-11-LABX-0040,CIMI,Centre International de Mathématiques et d'Informatique (de Toulouse)(2011), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), and Universidad Nacional Autónoma de México (UNAM)
- Subjects
0209 industrial biotechnology ,Constant coefficients ,Control and Optimization ,Discretization ,moments method ,parabolic systems ,Boundary (topology) ,02 engineering and technology ,Carleman estimate ,Kirchhoff condition ,01 natural sciences ,Domain (mathematical analysis) ,Dirichlet distribution ,symbols.namesake ,020901 industrial engineering & automation ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,0101 mathematics ,Mathematics ,Coupling ,Boundary control ,Applied Mathematics ,010102 general mathematics ,Mathematical analysis ,spectral analysis ,AMS Subject Clasification : 35K20 -93B05 -93B07 -93B60 ,Controllability ,Control and Systems Engineering ,Signal Processing ,symbols ,[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] ,Coupling coefficient of resonators - Abstract
The main concern of this article is to investigate the boundary controllability of some $$2\times 2$$ one-dimensional parabolic systems with both the interior and boundary couplings: The interior coupling is chosen to be linear with constant coefficient while the boundary one is considered by means of some Kirchhoff-type condition at one end of the domain. We consider here the Dirichlet boundary control acting only on one of the two state components at the other end of the domain. In particular, we show that the controllability properties change depending on which component of the system the control is being applied. Regarding this, we point out that the choices of the interior coupling coefficient and the Kirchhoff parameter play a crucial role to deduce the positive or negative controllability results. Further to this, we pursue a numerical study based on the well-known penalized HUM approach. We make some discretization for a general interior-boundary coupled parabolic system, mainly to incorporate the effects of the boundary couplings into the discrete setting. This allows us to illustrate our theoretical results as well as to experiment some more examples which fit under the general framework, for instance a similar system with a Neumann boundary control on either one of the two components.
- Published
- 2021
- Full Text
- View/download PDF
4. Stabilization of the weakly coupled plate equations with a locally distributed damping
- Author
-
Xianzheng Zhu
- Subjects
0209 industrial biotechnology ,Algebra and Number Theory ,Partial differential equation ,Semigroup ,Applied Mathematics ,lcsh:Mathematics ,010102 general mathematics ,Mathematical analysis ,02 engineering and technology ,Carleman estimate ,lcsh:QA1-939 ,01 natural sciences ,Coupling (physics) ,020901 industrial engineering & automation ,Coupled plate equations ,Ordinary differential equation ,0101 mathematics ,Indirect damping ,Logarithmic decay ,Analysis ,Resolvent ,Mathematics - Abstract
In this paper, we study the indirect stabilization of a system of plate equations which are weakly coupled and locally damped. By virtue of the general results due to Burq in the study of asymptotic behavior of solutions, we prove that the semigroup associated to the system is logarithmically stable under some assumptions on the damping and the coupling terms. For this purpose, we adopt an approach based on the growth of the resolvent on the imaginary axis, which can be obtained by some Carleman estimates.
- Published
- 2020
- Full Text
- View/download PDF
5. Analysis of the heart-torso conductivity parameters recovery inverse problem in cardiac electrophysiology ECG modelling
- Author
-
Mourad Bellassoued, Nejib Zemzemi, Moncef Mahjoub, Abir Amri, Ecole Nationale d'Ingénieurs de Tunis (ENIT), Université de Tunis El Manar (UTM), Modélisation et calculs pour l'électrophysiologie cardiaque (CARMEN), IHU-LIRYC, Université Bordeaux Segalen - Bordeaux 2-CHU Bordeaux [Bordeaux]-Université Bordeaux Segalen - Bordeaux 2-CHU Bordeaux [Bordeaux]-Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), This work has been supported by EPICARD cooperative research program, funded by INRIA international laboratory LIRIMA. The LAMSIN researcher’s work is supported on a regular basis by the Tunisian Ministry ofHigher Education, Scientific Research and Technology. This work was also supported by the Agence Nationale de la Recherche (grant number IHU LIRYC ANR-10-IAHU-04)., Epicard, Lirima, SPICY, ANR-10-IAHU-0004,LIRYC,L'Institut de Rythmologie et modélisation Cardiaque(2010), Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-IHU-LIRYC, and Université Bordeaux Segalen - Bordeaux 2-CHU Bordeaux [Bordeaux]-CHU Bordeaux [Bordeaux]
- Subjects
Quantitative Biology::Tissues and Organs ,Physics::Medical Physics ,Conductivity parameters ,Cardiac electrophysiology ,Carleman estimate ,01 natural sciences ,Stability (probability) ,Computer Science::Robotics ,2010 Mathematics Subject Classification.Primary 35Q92, Secondary: 35R30 ,medicine ,0101 mathematics ,Stability estimate ,Monodomain model ,Mathematics ,Applied Mathematics ,010102 general mathematics ,Mathematical analysis ,Inverse problem ,Torso ,Lipschitz continuity ,[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation ,010101 applied mathematics ,Parameter identification problem ,Elliptic curve ,medicine.anatomical_structure ,Analysis - Abstract
International audience; In this paper, we prove a stability estimate of the conductivity parameters identification problem in cardiac electrophysiology. The propagation of the electrical wave in the heart is described by the monodomain model coupled to an elliptic equation describing the diffusion of the electrical wave in the whole body. Our result concerns both heart and torso conductivity parameters. The main difficulty that we solve in this paper is related to the transmission conditions between the heart and the torso. We first, establish Carleman estimates for the coupled heart-torso system. Then, using these estimates and the Bukhgeim and Klibanov approach, we prove a Lipschitz stability estimate of cardiac and torso conductivity parameters.
- Published
- 2021
- Full Text
- View/download PDF
6. On Landis’ Conjecture in the Plane.
- Author
-
Kenig, Carlos, Silvestre, Luis, and Wang, Jenn-Nan
- Subjects
- *
LOGICAL prediction , *MATHEMATICAL proofs , *VECTOR analysis , *SCALAR field theory , *MATHEMATICAL domains , *MATHEMATICAL analysis - Abstract
In this paper we prove a quantitative form of Landis’ conjecture in the plane. Precisely, letW(z) be a measurable real vector-valued function andV(z) ≥0 be a real measurable scalar function, satisfying ‖W‖L ∞(R 2) ≤ 1 and ‖V‖L ∞(R 2) ≤ 1. Letube a real solution of Δu − ∇(Wu) − Vu = 0 inR2. Assume thatu(0) = 1 and |u(z)| ≤exp (C0|z|). Thenusatisfies inf |z 0| =R sup |z−z 0| <1|u(z)| ≥exp (−CRlog R), whereCdepends onC0. In addition to the case of the whole plane, we also establish a quantitative form of Landis’ conjecture defined in an exterior domain. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
7. Logarithmic Decay of Wave Equation with Kelvin-Voigt Damping
- Author
-
Luc Robbiano, Qiong Zhang, Laboratoire de Mathématiques de Versailles (LMV), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Beijing Institute of Technology (BIT), Natural Science Foundation of Beijing Municipality: 4182059 National Natural Science Foundation of China, NSFC: 61873036, and This work was supported by the Beijing Natural Science Foundation (grant No. 4182059) and National Natural Science Foundation of China (grants No. 61873036).
- Subjects
Physics ,Kelvin-Voigt damping ,0209 industrial biotechnology ,Logarithm ,General Mathematics ,lcsh:Mathematics ,010102 general mathematics ,Mathematical analysis ,02 engineering and technology ,Carleman estimate ,Wave equation ,lcsh:QA1-939 ,01 natural sciences ,Kelvin voigt ,020901 industrial engineering & automation ,logarithmic stability ,Resolvent operator ,Computer Science (miscellaneous) ,wave equation ,0101 mathematics ,[MATH]Mathematics [math] ,Engineering (miscellaneous) ,Energy (signal processing) - Abstract
International audience; In this paper, we analyze the longtime behavior of the wave equation with local Kelvin-Voigt Damping. Through introducing proper class symbol and pseudo-diff-calculus, we obtain a Carleman estimate, and then establish an estimate on the corresponding resolvent operator. As a result, we show the logarithmic decay rate for energy of the system without any geometric assumption on the subdomain on which the damping is effective.
- Published
- 2020
- Full Text
- View/download PDF
8. Logarithmic stability inequality in an inverse source problem for the heat equation on a waveguide
- Author
-
Diomba Sambou, Yavar Kian, Eric Soccorsi, CPT - E8 Dynamique quantique et analyse spectrale, Centre de Physique Théorique - UMR 7332 (CPT), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Facultad de Matemáticas [Santiago de Chile], Pontificia Universidad Católica de Chile (UC), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), and ANR-17-CE40-0029,MultiOnde,Problèmes Inverses Multi-Onde(2017)
- Subjects
Logarithm ,partial boundary data ,Boundary (topology) ,Carleman estimate ,01 natural sciences ,Mathematics - Analysis of PDEs ,35R30, 35K05 ,FOS: Mathematics ,Free boundary problem ,time-dependent source term ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Waveguide (acoustics) ,0101 mathematics ,Mathematics ,heat equation ,Applied Mathematics ,010102 general mathematics ,Mathematical analysis ,Inverse problem ,Parabolic partial differential equation ,010101 applied mathematics ,Inverse scattering problem ,stability inequality ,Heat equation ,Analysis ,Analysis of PDEs (math.AP) - Abstract
International audience; We prove logarithmic stability in the parabolic inverse problem of determining the space-varying factor in the source, by a single partial boundary measurement of the solution to the heat equation in an infinite closed waveguide, with homogeneous initial and Dirichlet data.
- Published
- 2018
- Full Text
- View/download PDF
9. Exact controllability for stochastic Schrödinger equations.
- Author
-
Lü, Qi
- Subjects
- *
STOCHASTIC processes , *SCHRODINGER equation , *BOUNDARY value problems , *PROBLEM solving , *REACTION-diffusion equations , *MATHEMATICAL analysis - Abstract
This paper is addressed to studying the exact controllability of stochastic Schrödinger equations by two controls. One is a boundary control and the other is an internal control in the diffusion term. By means of the duality argument, the control problem is converted into an observability problem for backward stochastic Schrödinger equations, and the desired observability estimate is obtained by a global Carleman estimate. At last, we give a result about the lack of exact controllability, which shows that the action of two controls is necessary. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF
10. Null controllability of a class of systems governed by coupled degenerate equations
- Author
-
Du, Runmei and Wang, Chunpeng
- Subjects
- *
COUPLED mode theory (Wave-motion) , *DEGENERATE differential equations , *CONTROL theory (Engineering) , *SYSTEM analysis , *MATHEMATICAL analysis , *MATHEMATICAL inequalities - Abstract
Abstract: This paper concerns the null controllability of the system governed by coupled degenerate equations. By the Carleman estimate for the case of a single degenerate equation, the Carleman estimate and the observability inequality are established. Then, the system with two controls and the system with one control are shown to be null controllable. [Copyright &y& Elsevier]
- Published
- 2013
- Full Text
- View/download PDF
11. Identification of two coefficients with data of one component for a nonlinear parabolic system.
- Author
-
Cristofol, Michel, Gaitan, Patricia, Ramoul, Hichem, and Yamamoto, Masahiro
- Subjects
- *
COEFFICIENTS (Statistics) , *NONLINEAR systems , *PRINCIPAL components analysis , *CARLEMAN theorem , *MATHEMATICAL analysis , *ESTIMATION theory - Abstract
In this article, we consider a nonlinear parabolic system with two components and prove a stability estimate of Lipschitz type in determining two coefficients of the system by data of only one component. The main idea for the proof is a Carleman estimate. [ABSTRACT FROM PUBLISHER]
- Published
- 2012
- Full Text
- View/download PDF
12. Sharp observability inequalities for the 1-D plate equation with a potential.
- Author
-
Fu, Xiaoyu
- Subjects
- *
OBSERVABILITY (Control theory) , *MATHEMATICAL inequalities , *POTENTIAL theory (Mathematics) , *BOUNDARY element methods , *CARLEMAN theorem , *MATHEMATICAL programming , *MATHEMATICAL analysis - Abstract
This paper deals with the problem of sharp observability inequality for the 1-D plate equation w + w + q( t, x) w = 0 with two types of boundary conditions w = w = 0 or w = w = 0, and q( t, x) being a suitable potential. The author shows that the sharp observability constant is of order $$\exp \left( {C\left\| q \right\|_\infty ^{\tfrac{2} {7}} } \right)$$ for | q| ≥ 1. The main tools to derive the desired observability inequalities are the global Carleman inequalities, based on a new point wise inequality for the fourth order plate operator. [ABSTRACT FROM AUTHOR]
- Published
- 2012
- Full Text
- View/download PDF
13. Stability estimate in an inverse problem for non-autonomous magnetic Schrodinger equations.
- Author
-
Cristofol, Michel and Soccorsi, Eric
- Subjects
- *
INVERSE problems , *SCHRODINGER equation , *STABILITY (Mechanics) , *MAGNETIC fields , *MODULES (Algebra) , *LIPSCHITZ spaces , *MATHEMATICAL analysis - Abstract
We consider the inverse problem of determining the time-dependent magnetic field of the Schrodinger equation in a bounded open subset of [image omitted], [image omitted], from a finite number of Neumann data, when the boundary measurement is taken on an appropriate open subset of the boundary. We prove the Lipschitz stability of the magnetic potential in the Coulomb gauge class by n times changing initial value suitably. [ABSTRACT FROM AUTHOR]
- Published
- 2011
- Full Text
- View/download PDF
14. Identification of the Memory Kernels and Controllability for Parabolic Equations.
- Author
-
Lavanya, R.
- Subjects
- *
OBSERVABILITY (Control theory) , *MATHEMATICAL models , *KERNEL functions , *MATHEMATICAL analysis , *PARABOLIC operators , *DIFFERENTIAL equations , *CARLEMAN theorem , *BOUNDARY value problems , *INTEGRAL functions - Abstract
This paper deals with the controllability and observability properties of the mathematical models (describing systems with thermal memory) consisting of boundary value problems of parabolic type, where the differential equation contains additional integral expressions including "memory functions" which describe the memory property of the material. The proof of controllability relies on a Carleman type estimate and duality arguments. [ABSTRACT FROM AUTHOR]
- Published
- 2010
15. Reconstruction of two time independent coefficients in an inverse problem for a phase field system
- Author
-
Baranibalan, N., Sakthivel, K., Balachandran, K., and Kim, J.-H.
- Subjects
- *
INVERSE problems , *NONLINEAR systems , *STABILITY (Mechanics) , *SOBOLEV spaces , *MATRIX norms , *CARLEMAN theorem , *MATHEMATICAL analysis - Abstract
Abstract: In this paper we present stability results concerning the inverse problem of determining two time independent coefficients for a phase field system in a bounded domain for the dimension with a single observation on a subdomain and the Sobolev norm of certain partial derivatives of the solutions at a fixed positive time over the whole spatial domain. The proof of these results relies on an appropriate Carleman estimate for the phase field system. [Copyright &y& Elsevier]
- Published
- 2010
- Full Text
- View/download PDF
16. Null controllability for the parabolic equation with a complex principal part
- Author
-
Fu, Xiaoyu
- Subjects
- *
PARABOLIC differential equations , *PARTIAL differential operators , *GLOBAL analysis (Mathematics) , *CARLEMAN theorem , *SCHRODINGER equation , *MATHEMATICAL analysis - Abstract
Abstract: The paper is devoted to a study of the null controllability for the semilinear parabolic equation with a complex principal part. For this purpose, we establish a key weighted identity for partial differential operators (with real functions α and β), by which we develop a universal approach, based on global Carleman estimate, to deduce not only the desired explicit observability estimate for the linearized complex Ginzburg–Landau equation, but also all the known controllability/observability results for the parabolic, hyperbolic, Schrödinger and plate equations that are derived via Carleman estimates. [Copyright &y& Elsevier]
- Published
- 2009
- Full Text
- View/download PDF
17. Inverse problems for the phase field system with one observation.
- Author
-
Baranibalan, N., Sakthivel, K., Balachandran, K., and Kim, J. -H.
- Subjects
- *
INVERSE problems , *PARTIAL differential equations , *CARLEMAN theorem , *ANALYTIC functions , *SCHRODINGER equation , *MATHEMATICAL analysis - Abstract
First we establish a Carleman estimate with a single observation acting on a subdomain for the phase field system in a bounded domain [image omitted] Then this estimate is successfully used along with certain energy estimates to obtain the stability result for the inverse problem consisting of retrieving a smooth diffusion coefficient in the given system for the dimension [image omitted] [ABSTRACT FROM AUTHOR]
- Published
- 2009
- Full Text
- View/download PDF
18. Carleman estimates for integro-differential parabolic equations with singular memory kernels
- Author
-
Daniela Sforza, Paola Loreti, and Masahiro Yamamoto
- Subjects
Numerical Analysis ,Weight function ,Partial differential equation ,Applied Mathematics ,parabolic equations ,integro-differential equations ,fading memory ,Carleman estimate ,010102 general mathematics ,Mathematical analysis ,Mathematics::Analysis of PDEs ,Perturbation (astronomy) ,01 natural sciences ,Parabolic partial differential equation ,010101 applied mathematics ,Time factor ,0101 mathematics ,Crucial point ,Analysis ,Mathematics - Abstract
On the basis of the Carleman estimate for the parabolic equation, we prove a Carleman estimate for the integro-differential operator $$\partial _t-\triangle +\int _0^t K(x,t,r)\triangle \ dr$$ where the integral kernel has a behaviour like a weakly singular one. In the proof we consider the integral term as a perturbation. The crucial point is a special choice of the time factor of the weight function.
- Published
- 2017
- Full Text
- View/download PDF
19. Inverse Problems for Parabolic Equation with Discontinuous Coefficients
- Author
-
Varadharaj Dinakar, N. Barani Balan, and Krishnan Balachandran
- Subjects
Statistics and Probability ,Inverse problems ,0209 industrial biotechnology ,Numerical Analysis ,Reaction-Diffusion model ,Applied Mathematics ,lcsh:Mathematics ,Mathematical analysis ,02 engineering and technology ,Parabolic cylinder function ,Inverse problem ,Carleman estimate ,lcsh:QA1-939 ,01 natural sciences ,Stability (probability) ,Parabolic partial differential equation ,010101 applied mathematics ,020901 industrial engineering & automation ,Discontinuous Galerkin method ,Parabolic cylindrical coordinates ,Reaction–diffusion system ,0101 mathematics ,Stability ,Analysis ,Mathematics - Abstract
We consider the reaction-diffusion equation with discontinuities in the diffusion coefficient and the potential term. We start by deriving the Carleman estimate for the discontinuous reaction-diffusion operator which is deployed in the inverse problems of finding the stability result of the two discontinuous coefficients from the internal observations of the given parabolic equation.
- Published
- 2017
20. A Carleman inequality for the stationary anisotropic Maxwell system
- Author
-
Eller, Matthias M. and Yamamoto, Masahiro
- Subjects
- *
CAUCHY problem , *BACKLUND transformations , *MATHEMATICAL analysis , *PARTIAL differential equations - Abstract
Abstract: A Carleman estimate for the stationary anisotropic Maxwell system is established. Its proof adopts a technique pioneered by Calderón to an overdetermined systems with rough coefficients. As an application, the conditional stability of the Cauchy problem is discussed. [Copyright &y& Elsevier]
- Published
- 2006
- Full Text
- View/download PDF
21. GLOBAL STABILIZATION OF THE GENERALIZED KORTEWEG-DE VRIES EQUATION POSED ON A FINITE DOMAIN.
- Author
-
Rosier, Lionel and Bing-Yu Zhang
- Subjects
- *
KORTEWEG-de Vries equation , *NONLINEAR differential equations , *NONLINEAR theories , *FINITE differences , *MATHEMATICAL analysis , *MATHEMATICS - Abstract
This paper is concerned with the internal stabilization of the generalized Korteweg—de Vries equation on a bounded domain. The global well-posedness and the exponential stability are investigated when the exponent in the nonlinear term ranges over the interval [1, 4). The global exponential stability is obtained whatever the location where the damping is active, confirming positively a conjecture of Perla Menzala, Vasconcellos, and Zuazua [Quart. Appl. Math., 60 (2002), pp. 111-129]. [ABSTRACT FROM AUTHOR]
- Published
- 2006
- Full Text
- View/download PDF
22. Lipschitz stability in an inverse problem for the Korteweg-de Vries equation on a finite domain
- Author
-
Mo Chen
- Subjects
Partial differential equation ,Algebra and Number Theory ,Inverse scattering transform ,Fictitious domain method ,010102 general mathematics ,Mathematical analysis ,Mathematics::Analysis of PDEs ,lcsh:QA299.6-433 ,lcsh:Analysis ,Inverse problem ,Carleman estimate ,Lipschitz continuity ,01 natural sciences ,010101 applied mathematics ,Nonlinear Sciences::Exactly Solvable and Integrable Systems ,Inverse scattering problem ,Korteweg-de Vries equation ,Free boundary problem ,inverse problem ,0101 mathematics ,Korteweg–de Vries equation ,Nonlinear Sciences::Pattern Formation and Solitons ,Analysis ,Mathematics - Abstract
In this paper, we address an inverse problem for the Korteweg-de Vries equation posed on a bounded domain with boundary conditions proposed by Colin and Ghidaglia. More precisely, we retrieve the principal coefficient from the measurements of the solution on a part of the boundary and also at some positive time in the whole space domain. The Lipschitz stability of this inverse problem relies on a Carleman estimate for the linearized Korteweg-de Vries equation and the Bukhgeı̌m-Klibanov method.
- Published
- 2017
- Full Text
- View/download PDF
23. Determination of non-compactly supported electromagnetic potentials in unbounded closed waveguide
- Author
-
Yavar Kian, Centre de Physique Théorique - UMR 7332 (CPT), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), CPT - E8 Dynamique quantique et analyse spectrale, Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), and ANR-17-CE40-0029,MultiOnde,Problèmes Inverses Multi-Onde(2017)
- Subjects
Inverse problems ,General Mathematics ,domain ,elliptic equations ,Boundary (topology) ,Carleman estimate ,partial data ,01 natural sciences ,Domain (mathematical analysis) ,Mathematics - Analysis of PDEs ,closed waveguide ,FOS: Mathematics ,unbounded ,Waveguide (acoustics) ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,0101 mathematics ,unbounded domain ,Mathematics ,010102 general mathematics ,Mathematical analysis ,Inverse problem ,Magnetic field ,35R30, 35J15 ,electromagnetic potential ,Compact space ,Bounded function ,Electric potential ,Analysis of PDEs (math.AP) - Abstract
We study the inverse problem of determining a magnetic Schrodinger operator in an unbounded closed waveguide from boundary measurements. We consider this problem with a general closed waveguide in the sense that we only require our unbounded domain to be contained into an infinite cylinder. In this context we prove the unique recovery of the magnetic field and the electric potential associated with general bounded and non-compactly supported electromagnetic potentials. By assuming that the electromagnetic potentials are known on the neighborhood of the boundary outside a compact set, we even prove the unique determination of the magnetic field and the electric potential from measurements restricted to a bounded subset of the infinite boundary. Finally, in the case of a waveguide taking the form of an infinite cylindrical domain, we prove the recovery of the magnetic field and the electric potential from partial data corresponding to restriction of Neumann boundary measurements to slightly more than half of the boundary. We establish all these results by mean of a new class of complex geometric optics solutions and of Carleman estimates suitably designed for our problem stated in an unbounded domain and with bounded electromagnetic potentials.
- Published
- 2020
- Full Text
- View/download PDF
24. An inverse stability result for non-compactly supported potentials by one arbitrary lateral Neumann observation
- Author
-
Mourad Bellassoued, Yavar Kian, Eric Soccorsi, Fédération de recherche Denis Poisson (FDP), Université d'Orléans (UO)-Université de Tours (UT)-Centre National de la Recherche Scientifique (CNRS), Université de Carthage - University of Carthage, Centre de Physique Théorique - UMR 7332 (CPT), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), CPT - E8 Dynamique quantique et analyse spectrale, Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Université de Tours (UT)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), and Université d'Orléans (UO)-Université de Tours-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Infinite cylindrical waveguide ,Logarithm ,Inverse Problems ,Boundary (topology) ,Inverse ,Schrödinger equation ,Scalar potential ,Carleman estimate ,01 natural sciences ,Domain (mathematical analysis) ,35R30, 35Q41 ,symbols.namesake ,Stability estimate ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Waveguide (acoustics) ,0101 mathematics ,Mathematics ,Applied Mathematics ,010102 general mathematics ,Mathematical analysis ,Inverse problem ,16. Peace & justice ,010101 applied mathematics ,symbols ,Analysis - Abstract
International audience; In this paper we investigate the inverse problem of determining the time independent scalar potential of the dynamic Schrödinger equation in an infinite cylindrical domain, from partial measurement of the solution on the boundary. Namely, if the potential is known in a neighborhood of the boundary of the spatial domain, we prove that it can be logarithmic stably determined in the whole waveguide from a single observation of the solution on any arbitrary strip-shaped subset of the boundary.
- Published
- 2016
- Full Text
- View/download PDF
25. Determining the conductivity for a non-autonomous hyperbolic operator in a cylindrical domain
- Author
-
Larisa Beilina, Michel Cristofol, Shumin Li, Department of Mathematical Sciences, Chalmers University of Technology [Göteborg]-University of Gothenburg (GU), Institut de Mathématiques de Marseille (I2M), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU), École Centrale de Marseille (ECM), Wu Wen-Tsun Key Laboratory of Mathematics, Chinese Academy of Sciences, Chinese Academy of Sciences [Changchun Branch] (CAS), University of Gothenburg (GU), Centre National de la Recherche Scientifique (CNRS)-École Centrale de Marseille (ECM)-Aix Marseille Université (AMU), School of Mathematical Sciences, University of Science and Technology of China [Hefei] (USTC), Faculty of Science, University of Gothenburg, Sweden, and University of Science and Technology of China, Hefei
- Subjects
hyperbolic equation ,infinite domain ,time- and space-dependent coefficient ,General Mathematics ,Operator (physics) ,010102 general mathematics ,Mathematical analysis ,General Engineering ,Boundary (topology) ,Function (mathematics) ,Conductivity ,Inverse problem ,Carleman estimate ,[INFO.INFO-NA]Computer Science [cs]/Numerical Analysis [cs.NA] ,01 natural sciences ,Domain (mathematical analysis) ,hyperbolic equations ,010101 applied mathematics ,inverse problem ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Uniqueness ,time and space-dependent coefficient ,0101 mathematics ,Hyperbolic partial differential equation ,Mathematics - Abstract
arXiv admin note: text overlap with arXiv:1501.01384; International audience; This paper is devoted to the reconstruction of the conductivity coefficient for a nonautonomous hyperbolic operator an infinite cylindrical domain. Applying a local Carleman estimate, we prove the uniqueness and a Hölder stability in the determination of the conductivity using a single measurement data on the lateral boundary. Our numerical examples show good reconstruction of the location and contrast of the conductivity function in 3 dimensions.
- Published
- 2018
- Full Text
- View/download PDF
26. Uniqueness, stability and numerical reconstruction of a time and space-dependent conductivity for an inverse hyperbolic problem
- Author
-
Shumin Li, Larisa Beilina, Michel Cristofol, Chalmers University of Technology [Gothenburg, Sweden], University of Gothenburg (GU), Institut de Mathématiques de Marseille (I2M), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), University of Science and Technology of China [Hefei] (USTC), Yu. G. Smirnov, and L. Beilina
- Subjects
infinite domain ,hyperbolic equation ,Spacetime ,Mathematical analysis ,Inverse ,Boundary (topology) ,Inverse problem ,Carleman estimate ,Domain (mathematical analysis) ,Inverse Problem ,Bounded function ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Uniqueness ,time and space-dependent coefficient ,Hyperbolic partial differential equation ,Mathematics - Abstract
Proceedings of PIERS 2017, St. Petersburg, Russia, May 22-25; International audience; This paper is devoted to the reconstruction of the time and space-dependent coefficient in an inverse hyperbolic problem in a bounded domain. Using a local Carleman estimate we prove the uniqueness and a Hölder stability in the determining of the conductivity by a single measurement on the lateral boundary. Our numerical examples show possibility of the determination of the location and the large contrast of the space-dependent function in three dimensions.
- Published
- 2018
- Full Text
- View/download PDF
27. On Carleman estimates with two large parameters
- Author
-
Jérôme Le Rousseau, Mathématiques - Analyse, Probabilités, Modélisation - Orléans (MAPMO), Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), Fédération de recherche Denis Poisson (FDP), Université de Tours (UT)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), and Université d'Orléans (UO)-Université de Tours-Centre National de la Recherche Scientifique (CNRS)
- Subjects
History ,General Mathematics ,010103 numerical & computational mathematics ,Carleman estimate ,01 natural sciences ,Exponential form ,Weyl-Hörmander calculus with parameters ,Education ,chemistry.chemical_compound ,Quasi-analytic function ,Operator (computer programming) ,Simple (abstract algebra) ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Applied mathematics ,pseudo-convexity ,0101 mathematics ,Mathematics ,010102 general mathematics ,Mathematical analysis ,Function (mathematics) ,Differential operator ,Computer Science Applications ,010101 applied mathematics ,Alpha (programming language) ,chemistry ,AMS 2000 subject classification: 35A02 ,35B45 ,35S05 ,Characteristic property ,Weighted energy - Abstract
International audience; A Carleman estimate for a differential operator $P$ is a weighted energy estimate with a weight of exponential form $\exp(\tau \varphi)$ that involves a large parameter, $\tau>0$. The function $\varphi$ and the operator $P$ need to fulfill some sub-ellipticity properties that can be achieved for instance by choosing $\varphi = \exp(\alpha \psi)$, involving a second large parameter, $\alpha>0$, with $\psi$ satisfying some geometrical conditions. The purpose of this article is to give the framework to keep explicit the dependency upon the two large parameters in the resulting Carleman estimates. The analysis is absed on the introduction of a proper Weyl-Hörmander calculus for pseudo-differential operators. Carleman estimates of various strengths are considered: estimates under the (strong) \pcty condition and estimates under the simple characteristic property. In each case the associated geometrical conditions for the function $\psi$ is proven necessary and sufficient. In addition some optimality results with respect to the power of the large parameters are proven.
- Published
- 2015
- Full Text
- View/download PDF
28. Controllability of a 4 × 4 quadratic reaction-diffusion system
- Author
-
Kévin Le Balc'h, Institut de Recherche Mathématique de Rennes ( IRMAR ), Université de Rennes 1 ( UR1 ), Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -AGROCAMPUS OUEST-École normale supérieure - Rennes ( ENS Rennes ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National des Sciences Appliquées ( INSA ) -Université de Rennes 2 ( UR2 ), Université de Rennes ( UNIV-RENNES ) -Centre National de la Recherche Scientifique ( CNRS ), École normale supérieure - Rennes ( ENS Rennes ), Institut de Recherche Mathématique de Rennes (IRMAR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), École normale supérieure - Rennes (ENS Rennes), AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), and Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)
- Subjects
Change of variables ,Controllability to stationary states ,Controllability Gramian ,Applied Mathematics ,010102 general mathematics ,Mathematical analysis ,Carleman estimate ,01 natural sciences ,Domain (mathematical analysis) ,Carleman esti- mate ,return method ,010101 applied mathematics ,Controllability ,Nonlinear system ,[ MATH.MATH-AP ] Mathematics [math]/Analysis of PDEs [math.AP] ,Linearization ,nonlinear coupling ,Reaction–diffusion system ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,0101 mathematics ,Invariant (mathematics) ,parabolic system ,Analysis ,Mathematics - Abstract
International audience; We consider a 4 × 4 nonlinear reaction-diffusion system posed on a smooth domain Ω of R N (N ≥ 1) with controls localized in some arbitrary nonempty open subset ω of the domain Ω. This system is a model for the evolution of concentrations in reversible chemical reactions. We prove the local exact controllability to stationary constant solutions of the underlying reaction-diffusion system for every N ≥ 1 in any time T > 0. A specificity of this control system is the existence of some invariant quantities in the nonlinear dynamics. The proof is based on a linearization which uses return method and an adequate change of variables that creates crossed diffusion which will be used as coupling terms of second order. The controllability properties of the linearized system are deduced from Carleman estimates. A Kakutani's fixed-point argument enables to go back to the nonlinear parabolic system. Then, we prove a global controllability result in large time for 1 ≤ N ≤ 2 thanks to our local controllabillity result together with a known theorem on the asymptotics of the free nonlinear reaction diffusion system.
- Published
- 2017
- Full Text
- View/download PDF
29. Recovery of non compactly supported coefficients of elliptic equations on an infinite waveguide
- Author
-
Yavar Kian, CPT - E8 Dynamique quantique et analyse spectrale, Centre de Physique Théorique - UMR 7332 (CPT), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), and Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
slab ,General Mathematics ,Mathematics::Analysis of PDEs ,Boundary (topology) ,Context (language use) ,Scalar potential ,Carleman estimate ,partial data ,01 natural sciences ,infinite cylindrical waveguide ,Domain (mathematical analysis) ,Mathematics - Analysis of PDEs ,scalar potential ,0103 physical sciences ,FOS: Mathematics ,Waveguide (acoustics) ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,0101 mathematics ,unbounded domain ,Mathematics ,Operator (physics) ,010102 general mathematics ,Mathematical analysis ,Elliptic equation ,Mathematics::Spectral Theory ,Elliptic curve ,35R30, 35J15 ,Bounded function ,010307 mathematical physics ,Analysis of PDEs (math.AP) - Abstract
We consider the unique recovery of a non-compactly supported and non-periodic perturbation of a Schrödinger operator in an unbounded cylindrical domain, also called waveguide, from boundary measurements. More precisely, we prove recovery of a general class of electric potentials from the partial Dirichlet-to-Neumann map, where the Dirichlet data is supported on slightly more than half of the boundary and the Neumann data is taken on the other half of the boundary. We apply this result in different contexts including recovery of some general class of non-compactly supported coefficients from measurements on a bounded subset and recovery of an electric potential, supported on an unbounded cylinder, of a Schrödinger operator in a slab.
- Published
- 2017
- Full Text
- View/download PDF
30. Optimal stability for a first order coefficient in a non-self-adjoint wave equation from dirichlet-to-neumann map
- Author
-
Ibtissem Ben Aïcha, Mourad Bellassoued, Laboratoire de Modélisation Mathématique et Numérique dans les Sciences de l'Ingénieur [Tunis] (LR-LAMSIN-ENIT), Ecole Nationale d'Ingénieurs de Tunis (ENIT), and Université de Tunis El Manar (UTM)-Université de Tunis El Manar (UTM)
- Subjects
Electromagnetic wave equation ,Dirichlet-to-Neumann map ,Carleman estimate ,01 natural sciences ,Stability (probability) ,Dirichlet distribution ,Theoretical Computer Science ,Reduction (complexity) ,symbols.namesake ,Mathematics - Analysis of PDEs ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,0101 mathematics ,Mathematical Physics ,Mathematics ,Stability result ,Applied Mathematics ,010102 general mathematics ,Mathematical analysis ,Inverse problem ,Wave equation ,Computer Science Applications ,010101 applied mathematics ,Signal Processing ,symbols ,Hyperbolic partial differential equation ,Self-adjoint operator ,Analysis of PDEs (math.AP) - Abstract
This paper is focused on the study of an inverse problem for a non-self-adjoint hyperbolic equation. More precisely, we attempt to stably recover a first order coefficient appearing in a wave equation from the knowledge of Neumann boundary data. We show in dimension n greater than two, a stability estimate of H{\"o}lder type for the inverse problem under consideration. The proof involves the reduction to an auxiliary inverse problem for an electromagnetic wave equation and the use of an appropriate Carleman estimate.
- Published
- 2017
31. Determining the waveguide conductivity in a hyperbolic equation from a single measurement on the lateral boundary
- Author
-
Eric Soccorsi, Michel Cristofol, Shumin Li, Institut de Mathématiques de Marseille (I2M), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), School of Mathematical Sciences, University of Science and Technology of China [Hefei] (USTC), CPT - E8 Dynamique quantique et analyse spectrale, Centre de Physique Théorique - UMR 7332 (CPT), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), and Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Inverse problems ,Mathematics::Dynamical Systems ,Control and Optimization ,Single measurement ,Mathematics::Analysis of PDEs ,Boundary (topology) ,Conductivity ,Carleman estimate ,01 natural sciences ,Stability (probability) ,Domain (mathematical analysis) ,law.invention ,Mathematics - Analysis of PDEs ,law ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,0101 mathematics ,Physics ,Applied Mathematics ,010102 general mathematics ,Mathematical analysis ,Inverse problem ,16. Peace & justice ,010101 applied mathematics ,Hyperbolic partial differential equation ,Waveguide ,Analysis of PDEs (math.AP) - Abstract
International audience; We consider the multidimensional inverse problem of determining the conductivity coefficient of a hyperbolic equation in an infinite cylindrical domain, from a single boundary observation of the solution. We prove Hölder stability with the aid of a Carleman estimate specifically designed for hyperbolic waveguides.
- Published
- 2016
- Full Text
- View/download PDF
32. Carleman estimates for stratified media
- Author
-
Jérôme Le Rousseau, Yves Dermenjian, Assia Benabdallah, Laboratoire d'Analyse, Topologie, Probabilités (LATP), Université Paul Cézanne - Aix-Marseille 3-Université de Provence - Aix-Marseille 1-Centre National de la Recherche Scientifique (CNRS), Fédération de recherche Denis Poisson (FDP), Université de Tours (UT)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), Mathématiques - Analyse, Probabilités, Modélisation - Orléans (MAPMO), Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), ANR-07-JCJC-0139,CoNuM,Control and Numerical Methods. Applications to biology.(2007), Université d'Orléans (UO)-Université de Tours-Centre National de la Recherche Scientifique (CNRS), Université d'Orléans (UO)-Université de Tours (UT)-Centre National de la Recherche Scientifique (CNRS), and Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Non-smooth coefficients ,Elliptic operators ,010102 general mathematics ,Mathematical analysis ,Boundary (topology) ,Parabolic operators ,Carleman estimate ,Classification of discontinuities ,01 natural sciences ,Domain (mathematical analysis) ,010101 applied mathematics ,Elliptic operator ,AMS 2010 subject classification: 35J15, 35K10 ,Stratified media ,Observation location ,Bounded function ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,0101 mathematics ,Anisotropy ,Analysis ,Mathematics - Abstract
International audience; We consider anisotropic elliptic and parabolic operators in a bounded stratified media in $\R^n$ characterized by discontinuties of the coefficients in one direction. The surfaces of discontinuities cross the boundary of the domain. We prove Carleman estimates for these operators with an arbitrary observation region.
- Published
- 2011
- Full Text
- View/download PDF
33. Local and global Carleman estimates for parabolic operators with coefficients with jumps at interfaces
- Author
-
Jérôme Le Rousseau, Luc Robbiano, Mathématiques - Analyse, Probabilités, Modélisation - Orléans (MAPMO), Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), Laboratoire de Mathématiques de Versailles (LMV), and Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Parabolic equation ,Transmission problem ,Spacetime ,General Mathematics ,Calderón projectors ,010102 general mathematics ,Mathematical analysis ,Scalar (mathematics) ,Microlocal analysis ,Carleman estimate ,01 natural sciences ,010101 applied mathematics ,Operator (computer programming) ,Non-smooth coefficient ,Piecewise ,Jump ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,AMS 2000 subject classification: 35K05 ,35K20 ,35S15 ,0101 mathematics ,Anisotropy ,Mathematics - Abstract
In (0,T)×Ω, Ω open subset of ℝ n , n≥2, we consider a parabolic operator P=∂ t −∇ x δ(t,x)∇ x , where the (scalar) coefficient δ(t,x) is piecewise smooth in space yet discontinuous across a smooth interface S. We prove a global in time, local in space Carleman estimate for P in the neighborhood of any point of the interface. The “observation” region can be chosen independently of the sign of the jump of the coefficient δ at the considered point. The derivation of this estimate relies on the separation of the problem into three microlocal regions related to high and low tangential frequencies at the interface. In the high-frequency regime we use Calderon projectors. In the low-frequency regime we follow a more classical approach. Because of the parabolic nature of the problem we need to introduce Weyl-Hormander anisotropic metrics, symbol classes and pseudo-differential operators. Each frequency regime and the associated technique require a different calculus. A global in time and space Carleman estimate on (0,T)×M, M a manifold, is also derived from the local result.
- Published
- 2010
- Full Text
- View/download PDF
34. Inverse viscosity problem for the Navier–Stokes equation
- Author
-
Gen Nakamura, Yu Jiang, Jishan Fan, and Michele Di Cristo
- Subjects
Applied Mathematics ,Mathematical analysis ,Mathematics::Analysis of PDEs ,Navier–Stokes existence and smoothness ,Carleman estimate ,Inverse problem ,Non-dimensionalization and scaling of the Navier–Stokes equations ,Lipschitz continuity ,Physics::Fluid Dynamics ,Sobolev space ,Navier–Stokes equations ,Viscosity ,Inverse coefficient problem ,Hagen–Poiseuille flow from the Navier–Stokes equations ,Analysis ,Mathematics - Abstract
We consider an inverse problem of determining a viscosity coefficient in the Navier–Stokes equation by observation data in a neighborhood of the boundary. We prove the Lipschitz stability by the Carleman estimates in Sobolev spaces of negative order.
- Published
- 2010
- Full Text
- View/download PDF
35. Exponential stability of the plate equations with potential of second order and indefinite damping
- Author
-
Jing Li and Yingtao Wu
- Subjects
Observability inequality ,Damping ratio ,Exponential decay rate ,Applied Mathematics ,Mathematical analysis ,Perturbation (astronomy) ,Carleman estimate ,Upper and lower bounds ,Indefinite damping ,Exponential stability ,Exponential growth ,Plate equation ,Observability ,Exponential decay ,Analysis ,Mathematics ,Numerical stability - Abstract
We study the exponential stability of the plate equations with potential of second order and indefinite sign damping term. By means of a global Carleman-type estimate and the usual perturbation method, we show that the energy of the system decays exponentially provided that the negative damping is sufficiently small. Both the energy decay rate and the upper bound estimate on the negative damping are given explicitly.
- Published
- 2009
- Full Text
- View/download PDF
36. Controllability and observability of a heat equation with hyperbolic memory kernel
- Author
-
Xiaoyu Fu, Jiongmin Yong, and Xu Zhang
- Subjects
Controllability ,FTCS scheme ,Applied Mathematics ,Mathematical analysis ,Heat equation with memory ,Carleman estimate ,Parabolic partial differential equation ,Highly concentrated approximate solution ,Kernel (image processing) ,Heat equation ,Observability ,Observability estimate ,Anisotropy ,Hyperbolic partial differential equation ,Analysis ,Mathematics - Abstract
The exact controllability and observability for a heat equation with hyperbolic memory kernel in anisotropic and nonhomogeneous media are considered. Due to the appearance of such a kind of memory, the speed of propagation for solutions to the heat equation is finite and the corresponding controllability property has a certain nature similar to hyperbolic equations, and is significantly different from that of the usual parabolic equations. By means of Carleman estimate, we establish a positive controllability and observability result under some geometric condition. On the other hand, by a careful construction of highly concentrated approximate solutions to hyperbolic equations with memory, we present a negative controllability and observability result when the geometric condition is not satisfied.
- Published
- 2009
- Full Text
- View/download PDF
37. Carleman Estimate for Elliptic Operators with Coefficients with Jumps at an Interface in Arbitrary Dimension and Application to the Null Controllability of Linear Parabolic Equations
- Author
-
Luc Robbiano, Jérôme Le Rousseau, Laboratoire d'Analyse, Topologie, Probabilités (LATP), Université Paul Cézanne - Aix-Marseille 3-Université de Provence - Aix-Marseille 1-Centre National de la Recherche Scientifique (CNRS), Mathématiques - Analyse, Probabilités, Modélisation - Orléans (MAPMO), Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), Laboratoire de Mathématiques de Versailles (LMV), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), The first author was partially supported by l'Agence Nationale de la Recherche under grant ANR-07-JCJC-0139-01, and Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Mathematics::Analysis of PDEs ,Microlocal analysis ,Carleman estimate ,01 natural sciences ,symbols.namesake ,Mathematics (miscellaneous) ,AMS 2000 subject classification: 35J15 ,35S15 ,35K05 ,93B05 ,93B07 ,Control ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Nabla symbol ,Boundary value problem ,0101 mathematics ,Mathematics ,Parabolic equation ,Dirichlet problem ,Transmission problem ,Mechanical Engineering ,Calderón projectors ,010102 general mathematics ,Mathematical analysis ,Elliptic equation ,Non-smooth coefficent ,Parabolic partial differential equation ,010101 applied mathematics ,Elliptic curve ,Elliptic operator ,Dirichlet boundary condition ,symbols ,Analysis - Abstract
In a bounded domain of R n+1, n ≧ 2, we consider a second-order elliptic operator, $${A=-{\partial_{x_0}^2} - \nabla_x \cdot (c(x) \nabla_x)}$$ , where the (scalar) coefficient c(x) is piecewise smooth yet discontinuous across a smooth interface S. We prove a local Carleman estimate for A in the neighborhood of any point of the interface. The “observation” region can be chosen independently of the sign of the jump of the coefficient c at the considered point. The derivation of this estimate relies on the separation of the problem into three microlocal regions and the Calderon projector technique. Following the method of Lebeau and Robbiano (Comm Partial Differ Equ 20:335–356, 1995) we then prove the null controllability for the linear parabolic initial problem with Dirichlet boundary conditions associated with the operator $${{\partial_t - \nabla_x \cdot (c(x) \nabla_x)}}$$ .
- Published
- 2009
- Full Text
- View/download PDF
38. Carleman estimates and null controllability for boundary-degenerate parabolic operators
- Author
-
Judith Vancostenoble, Piermarco Cannarsa, Partick Martinez, Dipartimento di Matematica [Roma II] (DIPMAT), Università degli Studi di Roma Tor Vergata [Roma], Institut de Mathématiques de Toulouse UMR5219 (IMT), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), and Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0209 industrial biotechnology ,Pure mathematics ,Class (set theory) ,degenerate parabolic equations ,null controllability ,Carleman estimate ,010102 general mathematics ,Degenerate energy levels ,Mathematical analysis ,Null (mathematics) ,Boundary (topology) ,Degenerate equation ,02 engineering and technology ,General Medicine ,93C20 (35K65 47N70 93B05) ,Space (mathematics) ,01 natural sciences ,Domain (mathematical analysis) ,Controllability ,020901 industrial engineering & automation ,Settore MAT/05 - Analisi Matematica ,0101 mathematics ,ComputingMilieux_MISCELLANEOUS ,Mathematics - Abstract
Motivated by several examples coming from physics, biology, and economics, we consider a class of parabolic operators that degenerate at the boundary of the space domain. We study null controllability by a locally distributed control. For this purpose, a specific Carleman estimate for the solutions of degenerate adjoint problems is proved. To cite this article: P. Cannarsa et al., C. R. Acad. Sci. Paris, Ser. I 347 (2009).
- Published
- 2009
- Full Text
- View/download PDF
39. Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem
- Author
-
Jérôme Le Rousseau, Yves Dermenjian, Assia Benabdallah, Laboratoire d'Analyse, Topologie, Probabilités (LATP), and Université Paul Cézanne - Aix-Marseille 3-Université de Provence - Aix-Marseille 1-Centre National de la Recherche Scientifique (CNRS)
- Subjects
observability ,Applied Mathematics ,010102 general mathematics ,Mathematical analysis ,parabolic equations ,AMS 2000 subject classification: 93B05, 93B07, 35K05, 35K55, 35R30 ,Inverse problem ,Carleman estimate ,01 natural sciences ,Parabolic partial differential equation ,010101 applied mathematics ,Controllability ,Piecewise ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Heat equation ,Observability ,0101 mathematics ,control ,Linear equation ,non-smooth coefficients ,Analysis ,Numerical stability ,Mathematics - Abstract
International audience; We study the observability and some of its consequences (controllability, identification of diffusion coefficients) for one-dimensional heat equations with discontinuous coefficients (piecewise $\Con^1$). The observability, for a linear equation, is obtained by a Carleman-type estimate. This kind of observability inequality yields controllability results for a semi-linear equation as well as a stability result for the identification of the diffusion coefficient.
- Published
- 2007
- Full Text
- View/download PDF
40. Estimates of initial conditions of parabolic equations and inequalities in infinite domains via lateral Cauchy data
- Author
-
Alexander V. Tikhonravov and Michael V. Klibanov
- Subjects
Cauchy problem ,Cauchy's convergence test ,Applied Mathematics ,Mathematical analysis ,Mathematics::Analysis of PDEs ,Cauchy distribution ,Parabolic cylinder function ,Carleman estimate ,Parabolic operator ,Elliptic partial differential equation ,Parabolic cylindrical coordinates ,Inverse problem ,Initial value problem ,Cauchy boundary condition ,Initial condition ,Analysis ,Mathematics - Abstract
A parabolic equation/inequality in an infinite domain is considered. The lateral Cauchy data are given at an arbitrary C 2 -smooth lateral surface. The inverse problem of the interest of this paper consists in an estimate of the unknown initial condition via these Cauchy data.
- Published
- 2007
- Full Text
- View/download PDF
41. Carleman estimates and controllability results for the one-dimensional heat equation with BV coefficients
- Author
-
Jérôme Le Rousseau, Laboratoire d'Analyse, Topologie, Probabilités (LATP), and Université Paul Cézanne - Aix-Marseille 3-Université de Provence - Aix-Marseille 1-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Constant coefficients ,0209 industrial biotechnology ,observability ,Mathematics::Analysis of PDEs ,AMS 2000: 93B05 ,93B07 ,35K05 ,35K55 ,02 engineering and technology ,Computer Science::Computational Geometry ,Carleman estimate ,01 natural sciences ,020901 industrial engineering & automation ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Limit (mathematics) ,Observability ,0101 mathematics ,non-smooth coefficients ,Mathematics ,Applied Mathematics ,010102 general mathematics ,Mathematical analysis ,parabolic equations ,General Medicine ,Parabolic partial differential equation ,Linear map ,Controllability ,Bounded function ,Piecewise ,Heat equation ,AMS 2000 subject classification: 93B05, 93B07, 35K05, 35K55 ,control ,Analysis - Abstract
We derive global Carleman estimates for one-dimensional linear parabolic operators ∂ t ± ∂ x ( c ∂ x ) with a coefficient c with bounded variations. These estimates are obtained by approximating c by piecewise regular coefficients, c e , and passing to the limit in the Carleman estimates associated to the operators defined with c e . Such estimates yield results of controllability to the trajectories for a class of semilinear parabolic equations. To cite this article: J. Le Rousseau, C. R. Acad. Sci. Paris, Ser. I 344 (2007).
- Published
- 2007
- Full Text
- View/download PDF
42. Inverse problem on a tree-shaped network: Unified approach for uniqueness
- Author
-
Lucie Baudouin, Masahiro Yamamoto, Équipe Méthodes et Algorithmes en Commande (LAAS-MAC), Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT), Graduate School of Mathematical Sciences, The University of Tokyo (UTokyo), Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), and Université Fédérale Toulouse Midi-Pyrénées
- Subjects
Applied Mathematics ,Mathematical analysis ,Stability (learning theory) ,Inverse problem ,Carleman estimate ,Wave equation ,AMS subject classifications: 35R30, 93C20, 34B45 ,Schrödinger equation ,symbols.namesake ,networks ,Inverse scattering problem ,symbols ,inverse problem ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Uniqueness ,Enhanced Data Rates for GSM Evolution ,Observability ,Analysis ,Mathematics - Abstract
International audience; In this article, we prove uniqueness results for coefficient inverse problems regarding wave, heat or Schr\"odinger equation on a tree-shaped network, as well as the corresponding stability result of the inverse problem for the wave equation. The objective is the determination of the potential on each edge of the network from the additional measurement of the solution at all but one external end points. Several results have already been obtained in this precise setting or in similar cases, and our main goal is to propose a unified and simpler method of proof of some of these results. The idea which we will develop for proving the uniqueness is to use a more traditional approach in coefficient inverse problems by Carleman estimates. Afterwards, using an observability estimate on the whole network, we apply a compactness-uniqueness argument and prove the stability for the wave inverse problem.
- Published
- 2015
43. Spectral inequality and resolvent estimate for the bi-Laplace operator
- Author
-
Jérôme Le Rousseau, Luc Robbiano, Laboratoire Analyse, Géométrie et Applications (LAGA), Université Paris 8 Vincennes-Saint-Denis (UP8)-Centre National de la Recherche Scientifique (CNRS)-Institut Galilée-Université Paris 13 (UP13), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Laboratoire de Mathématiques de Versailles (LMV), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and ANR-13-JS01-0006,iproblems,Problèmes Inverses(2013)
- Subjects
spectral inequality ,General Mathematics ,Boundary (topology) ,semi-classical caluclus ,Carleman estimate ,01 natural sciences ,controllability ,Mathematics - Analysis of PDEs ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Boundary value problem ,0101 mathematics ,Mathematics ,Resolvent ,Applied Mathematics ,Operator (physics) ,010102 general mathematics ,Mathematical analysis ,interpolation inequality ,resolvent estimate ,Eigenfunction ,Interpolation inequality ,stabilization ,Elliptic operator ,boundary value problem ,AMS 2010 subject classification: 35B45 ,35J30 ,35J40 ,35K25 ,35S15 ,74K20 ,93B05 ,93B07 ,93D15 ,high-order operators ,Laplace operator - Abstract
On a compact Riemannian manifold with boundary, we prove a spectral inequality for the bi-Laplace operator in the case of so-called "clamped" boundary conditions , that is, homogeneous Dirichlet and Neumann conditions simultaneously. We also prove a resolvent estimate for the generator of the damped plate semigroup associated with these boundary conditions. The spectral inequality allows one to observe finite sums of eigenfunctions for this fourth-order elliptic operator, from an arbitrary open subset of the manifold. Moreover, the constant that appears in the inequality grows as exp(C$\mu$ 1/4) where $\mu$ is the largest eigenvalue associated with the eigenfunctions appearing in the sum. This type of inequality is known for the Laplace operator. As an application, we obtain a null-controllability result for a higher-order parabolic equation. The resolvent estimate provides the spectral behavior of the plate semigroup generator on the imaginary axis. This type of estimate is known in the case of the damped wave semigroup. As an application , we deduce a stabilization result for the damped plate equation, with a log-type decay. The proofs of both the spectral inequality and the resolvent estimate are based on the derivation of different types of Carleman estimates for an elliptic operator related to the bi-Laplace operator: in the interior and at some boundaries. One of these estimates exhibits a loss of one full derivative. Its proof requires the introduction of an appropriate semi-classical calculus and a delicate microlocal argument.
- Published
- 2015
44. A quantitative Carleman estimate for second order elliptic operators
- Author
-
Martin Tautenhahn, Ivica Nakić, and Christian Rose
- Subjects
Weight function ,Carleman estimate ,Second order elliptic differential operator ,Explicit weight function ,Computer Science::Information Retrieval ,General Mathematics ,Mathematical analysis ,Mathematics::Analysis of PDEs ,35J15, 35B60, 35B45 ,Lipschitz continuity ,01 natural sciences ,010305 fluids & plasmas ,Elliptic operator ,Mathematics - Analysis of PDEs ,0103 physical sciences ,FOS: Mathematics ,Partial derivative ,Ball (mathematics) ,010306 general physics ,Mathematics ,Analysis of PDEs (math.AP) - Abstract
We prove a Carleman estimate for elliptic second order partial differential operators with Lipschitz continuous coefficients. The Carleman estimate is valid for any complex-valued function $u\in W^{2,2}$ with support in a punctured ball of arbitrary radius. The novelty of this Carleman estimate is that we establish an explicit dependence on the Lipschitz and ellipticity constants, the dimension of the space and the radius of the ball. In particular we provide a uniform and quantitative bound on the weight function for a class of elliptic operators given explicitly in terms of ellipticity and Lipschitz constant., Comment: 23 pages
- Published
- 2015
- Full Text
- View/download PDF
45. Carleman estimates for elliptic operators with complex coefficients. Part I: boundary value problems
- Author
-
Jérôme Le Rousseau, Mourad Bellassoued, Faculté des Sciences de Bizerte, Département de Mathematiques, Université de Carthage - University of Carthage, Fédération de recherche Denis Poisson (FDP), Université d'Orléans (UO)-Université de Tours-Centre National de la Recherche Scientifique (CNRS), LE STUDIUM (LE STUDIUM), Centre National de la Recherche Scientifique (CNRS)-Institut de recherche pour le développement [IRD] : UR-Institut National de la Santé et de la Recherche Médicale (INSERM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre national du machinisme agricole, du génie rural, des eaux et forêts (CEMAGREF)-Institut National de la Recherche Agronomique (INRA)-Bureau de Recherches Géologiques et Minières (BRGM) (BRGM), Mathématiques - Analyse, Probabilités, Modélisation - Orléans (MAPMO), Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Faculté des Sciences de Bizerte [Université de Carthage], Université d'Orléans (UO)-Université de Tours (UT)-Centre National de la Recherche Scientifique (CNRS), Bureau de Recherches Géologiques et Minières (BRGM) (BRGM)-Institut National de la Recherche Agronomique (INRA)-Centre national du machinisme agricole, du génie rural, des eaux et forêts (CEMAGREF)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de recherche pour le développement [IRD] : UR-Centre National de la Recherche Scientifique (CNRS), Université de Tours (UT)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), and Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)
- Subjects
Lopatinskii conditions ,elliptic operators ,Applied Mathematics ,General Mathematics ,Mathematical analysis ,Boundary problem ,Boundary (topology) ,Carleman estimate ,Elliptic operator ,Operator (computer programming) ,Factorization ,boundary problem ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Boundary value problem ,Connection (algebraic framework) ,AMS 2000 subject classification: 35B45 ,35J30 ,35J40 ,Sign (mathematics) ,Mathematics - Abstract
International audience; We consider elliptic operators with complex coefficients and we derive microlocal and local Carleman estimates near a boundary, under sub-ellipticity and strong Lopatinskii conditions. Carleman estimates are weighted {\em a priori} estimates for the solutions of the associated elliptic boundary problem. The weight is of exponential form, $\exp(\tau \varphi)$, where $\tau>0$ is meant to be taken as large as desired. Such estimates have numerous applications in unique continuation, inverse problems, and control theory. Based on inequalities for interior and boundary differential quadratic forms, the proof relies on the microlocal factorization of the symbol of the conjugated operator in connection with the sign of the imaginary part of its roots. We further consider weight functions of the form $\varphi= \exp(\gamma \psi)$, with $\gamma>0$ meant to be taken as large as desired, and we derive Carleman estimates where the dependency upon the two large parameters, $\tau$ and $\lambda$, is made explicit. Applications on unique continuation properties are given.
- Published
- 2015
- Full Text
- View/download PDF
46. Scale-free uncertainty principles and Wegner estimates for random breather potentials
- Author
-
Ivica Nakić, Matthias Täufer, Martin Tautenhahn, and Ivan Veselić
- Subjects
Uncertainty principle ,Breather ,Mathematical analysis ,Mathematics::Analysis of PDEs ,General Medicine ,Eigenfunction ,Mathematics::Spectral Theory ,symbols.namesake ,Operator (computer programming) ,Mathematics - Analysis of PDEs ,FOS: Mathematics ,scale-free unique continuation property ,equidistribution prop- erty ,observability estimate ,Carleman estimate ,Schrödinger operator ,quantitative uncer- tainty principle ,random breather potential ,Wegner estimate ,symbols ,Linear combination ,Nonlinear Sciences::Pattern Formation and Solitons ,Random variable ,Schrödinger's cat ,Eigenvalues and eigenvectors ,Analysis of PDEs (math.AP) ,Mathematical physics ,Mathematics - Abstract
We present new scale-free quantitative unique continuation principles for Schrödinger operators. They apply to linear combinations of eigenfunctions corresponding to eigenvalues below a predescribed energy, and can be formulated as an uncertainty principle for spectral projectors. This extends recent results of Rojas- Molina & Veselić, and Klein. We apply the scale- free unique continuation principle to obtain a Wegner estimate for a random Schrödinger operator of breather type. It holds for arbitrarily high energies. Schrödinger operators with random breather potentials have a non-linear dependence on random variables. We explain the challanges arising from this non-linear dependence. could be naturally implemented. Based on this criterion, a discretization procedure is constructed for the calculation of the optimal damping coefficient. If the internal damping is present, we show that this procedure can be used to obtain the optimal damping operator in the case of optimization over the set of all admissible damping operators.
- Published
- 2014
47. Stability of inverse problems for ultrahyperbolic equations
- Author
-
Fikret Gölgeleyen, Masahiro Yamamoto, and Zonguldak Bülent Ecevit Üniversitesi
- Subjects
Applied Mathematics ,General Mathematics ,Ultrahyperbolic equation ,Mathematical analysis ,Stability (learning theory) ,Inverse problem ,Carleman estimate ,Term (time) ,Boundary data ,Key (cryptography) ,Stability ,Mathematics - Abstract
In this paper, the authors consider inverse problems of determining a coefficient or a source term in an ultrahyperbolic equation by some lateral boundary data. The authors prove Hölder estimates which are global and local and the key tool is Carleman estimate. © 2014 Fudan University and Springer-Verlag Berlin Heidelberg., Council for Higher Education: 16.01.2012:558–2233, Manuscript received July 16, 2013. Revised November 8, 2013. 1Department of Mathematics, Bülent Ecevit University, Zonguldak 67100, Turkey. E-mail: f.golgeleyen@beun.edu.tr 2Department of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8914, Japan. E-mail: myama@ms.u-tokyo.ac.jp *This work was supported by the Council of Higher Education of Turkey (No. 16.01.2012:558–2233).
- Published
- 2014
48. Carleman estimate for infinite cylindrical quantum domains and application to inverse problems
- Author
-
Quang Sang Phan, Eric Soccorsi, Yavar Kian, Centre de Physique Théorique - UMR 7332 (CPT), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Institute of Mathematics [Krakow], and Uniwersytet Jagielloński w Krakowie = Jagiellonian University (UJ)
- Subjects
Mathematics::Analysis of PDEs ,Boundary (topology) ,Scalar potential ,Schrödinger equation ,Carleman estimate ,01 natural sciences ,Domain (mathematical analysis) ,Theoretical Computer Science ,symbols.namesake ,Mathematics - Analysis of PDEs ,scalar potential ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,0101 mathematics ,Quantum ,Mathematical Physics ,Mathematics ,Applied Mathematics ,Operator (physics) ,010102 general mathematics ,Mathematical analysis ,Inverse problem ,Mathematics::Spectral Theory ,infinite cylindrical domain ,Lipschitz continuity ,Computer Science Applications ,010101 applied mathematics ,Dirichlet boundary condition ,Signal Processing ,symbols ,AMS 2010 : 35R30 ,Analysis of PDEs (math.AP) - Abstract
We consider the inverse problem of determining the time independent scalar potential of the dynamic Schr\"odinger equation in an infinite cylindrical domain, from one Neumann boundary observation of the solution. Assuming that this potential is known outside some fixed compact subset of the waveguide, we prove that it may be Lipschitz stably retrieved by choosing the Dirichlet boundary condition of the system suitably. Since the proof is by means of a global Carleman estimate designed specifically for the Schr\"odinger operator acting in an unbounded cylindrical domain, the Neumann data is measured on an infinitely extended subboundary of the cylinder.
- Published
- 2014
- Full Text
- View/download PDF
49. H\'older stable determination of a quantum scalar potential in unbounded cylindrical domains
- Author
-
Yavar Kian, Quang Sang Phan, Eric Soccorsi, Centre de Physique Théorique - UMR 7332 (CPT), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Institute of Mathematics [Krakow], and Uniwersytet Jagielloński w Krakowie = Jagiellonian University (UJ)
- Subjects
Mathematics::Analysis of PDEs ,Boundary (topology) ,Scalar potential ,Schrödinger equation ,Carleman estimate ,01 natural sciences ,Stability (probability) ,Domain (mathematical analysis) ,symbols.namesake ,Mathematics - Analysis of PDEs ,scalar potential ,Neumann boundary condition ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,0101 mathematics ,Mathematics ,Applied Mathematics ,010102 general mathematics ,Mathematical analysis ,Inverse problem ,infinite cylindrical domain ,Mathematics::Spectral Theory ,010101 applied mathematics ,35R30 ,Dirichlet boundary condition ,symbols ,Analysis - Abstract
We consider the inverse problem of determining the time independent scalar potential of the dynamic Schr\"odinger equation in an infinite cylindrical domain from one boundary Neumann observation of the solution. We prove H\"older stability by choosing the Dirichlet boundary condition suitably.
- Published
- 2013
- Full Text
- View/download PDF
50. Approximate controllability for a 2D Grushin equation with potential having an internal singularity
- Author
-
Morgan Morancey, Institut de Mathématiques de Marseille (I2M), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), and Centre National de la Recherche Scientifique (CNRS)-École Centrale de Marseille (ECM)-Aix Marseille Université (AMU)
- Subjects
Algebra and Number Theory ,Operator (physics) ,Mathematical analysis ,Degenerate energy levels ,Carleman estimate ,unique continuation ,Square (algebra) ,Controllability ,Grushin operator ,Singularity ,Mathematics - Analysis of PDEs ,degenerate parabolic equation ,Optimization and Control (math.OC) ,self-adjoint extensions ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Heat equation ,[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] ,Geometry and Topology ,Degeneracy (mathematics) ,Fourier series ,Mathematics - Optimization and Control ,singular potential ,Mathematics ,Analysis of PDEs (math.AP) - Abstract
International audience; This paper is dedicated to approximate controllability for Grushin equation on the rectangle (x, y) ∈ (−1, 1) × (0, 1) with an inverse square potential. This model corresponds to the heat equation for the Laplace-Beltrami operator associated to the Grushin metric on R^2 , studied by Boscain and Laurent. The operator is both degenerate and singular on the line {x = 0}. The approximate controllability is studied through unique continuation of the adjoint system. For the range of singularity under study, approximate controllability is proved to hold whatever the degeneracy is. Due to the internal inverse square singularity, a key point in this work is the study of well-posedness. An extension of the singular operator is designed imposing suitable transmission conditions through the singular-ity. Then, unique continuation relies on the Fourier decomposition of the 2d solution in one variable and Carleman estimates for the 1d heat equa-tion solved by the Fourier components. The Carleman estimate uses a suitable Hardy inequality.
- Published
- 2013
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.