1. Ruelle–Pollicott resonances for manifolds with hyperbolic cusps
- Author
-
Tobias Weich, Yannick Guedes Bonthonneau, Laboratoire Analyse, Géométrie et Applications (LAGA), Université Paris 8 Vincennes-Saint-Denis (UP8)-Centre National de la Recherche Scientifique (CNRS)-Université Sorbonne Paris Nord, and Universität Paderborn (UPB)
- Subjects
Mathematics::Dynamical Systems ,Applied Mathematics ,General Mathematics ,010102 general mathematics ,Spectrum (functional analysis) ,Mathematics::Geometric Topology ,01 natural sciences ,Nonlinear Sciences::Chaotic Dynamics ,0103 physical sciences ,Geodesic flow ,Mathematics::Differential Geometry ,010307 mathematical physics ,Negative curvature ,0101 mathematics ,Finite set ,ComputingMilieux_MISCELLANEOUS ,[MATH.MATH-SP]Mathematics [math]/Spectral Theory [math.SP] ,Mathematics ,Mathematical physics - Abstract
We present new methods to construct a Ruelle-Pollicott spectrum for the geodesic flow on manifolds with strictly negative curvature and a finite number of hyperbolic cusps.
- Published
- 2021
- Full Text
- View/download PDF