1. Radius selection using kernel density estimation for the computation of nonlinear measures
- Author
-
Abderrahmane Kheddar, Johan Medrano, Sofiane Ramdani, Annick Lesne, Interactive Digital Humans (IDH), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Joint Robotics Laboratory [Japan] (CNRS-AIST JRL), Centre National de la Recherche Scientifique (CNRS)-National Institute of Advanced Industrial Science and Technology (AIST), Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU), Institut de Génétique Moléculaire de Montpellier (IGMM), and Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
- Subjects
Correlation dimension ,Applied Mathematics ,Kernel density estimation ,General Physics and Astronomy ,correlation sum ,Statistical and Nonlinear Physics ,Probability density function ,Radius ,01 natural sciences ,correlation dimension ,010305 fluids & plasmas ,recurrence plots ,Histogram ,0103 physical sciences ,[NLIN.NLIN-CD]Nonlinear Sciences [physics]/Chaotic Dynamics [nlin.CD] ,nonlinear measures ,Applied mathematics ,Correlation integral ,Kolmogorov-Sinai entropy ,kernel density estimation ,010306 general physics ,Mathematical Physics ,Smoothing ,Mathematics ,Correlation sum - Abstract
International audience; When nonlinear measures are estimated from sampled temporal signals with finitelength, a radius parameter must be carefully selected to avoid a poor estimation. These measures are generally derived from the correlation integral which quantifies the probability of finding neighbors, i.e. pair of points spaced by less than the radius parameter. While each nonlinear measure comes with several specific empirical rules to select a radius value, we provide a systematic selection method. We show that the optimal radius for nonlinear measures can be approximated by the optimal bandwidth of a Kernel Density Estimator (KDE) related to the correlation sum. The KDE framework provides non-parametric tools to approximate a density function from finite samples (e.g. histograms) and optimal methods to select a smoothing parameter, the bandwidth (e.g. bin width in histograms). We use results from KDE to derive a closed-form expression for the optimal radius. The latter is used to compute the correlation dimension and to construct recurrence plots yielding an estimate of Kolmogorov-Sinai entropy. We assess our method through numerical experiments on signals generated by nonlinear systems and experimental electroencephalographic time series.
- Published
- 2021
- Full Text
- View/download PDF