Martin Costabel, Institut de Recherche Mathématique de Rennes (IRMAR), AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Vladimir Maz'ya, David Natroshvili, Eugene Shargorodsky, Wolfgang L. Wendland, Institut de Recherche Mathématique de Rennes ( IRMAR ), Université de Rennes 1 ( UR1 ), Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -AGROCAMPUS OUEST-École normale supérieure - Rennes ( ENS Rennes ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National des Sciences Appliquées ( INSA ) -Université de Rennes 2 ( UR2 ), Université de Rennes ( UNIV-RENNES ) -Centre National de la Recherche Scientifique ( CNRS ), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest, and Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)
International audience; For sufficiently smooth bounded plane domains, the equivalence between the inequalities of Babuška –Aziz for right inverses of the divergence and of Friedrichs on conjugate harmonic functions was shown by Horgan and Payne in 1983 [7]. In a previous paper [4] we proved that this equivalence, and the equality between the associated constants, is true without any regularity condition on the domain. In three dimensions, Velte [9] studied a generalization of the notion of conjugate harmonic functions and corresponding generalizations of Friedrich's inequality, and he showed for sufficiently smooth simply-connected domains the equivalence with inf-sup conditions for the divergence and for the curl. For this equivalence, Zsuppán [10] observed that our proof can be adapted, proving the equality between the corresponding constants without regularity assumptions on the domain. Here we formulate a generalization of the Friedrichs inequality for conjugate harmonic differential forms on bounded open sets in any dimension that contains the situations studied by Horgan–Payne and Velte as special cases. We also formulate the corresponding inf-sup conditions or Babuška –Aziz inequalities and prove their equivalence with the Friedrichs inequalities, including equality between the corresponding constants. No a-priori conditions on the regularity of the open set nor on its topology are assumed.