68 results on '"Julián Fernández"'
Search Results
2. A Hölder infinity Laplacian obtained as limit of Orlicz fractional Laplacians
- Author
-
Ariel Martin Salort, Julián Fernández Bonder, and Mayte Pérez-Llanos
- Subjects
Pure mathematics ,General Mathematics ,010102 general mathematics ,Differential operator ,01 natural sciences ,Domain (mathematical analysis) ,010101 applied mathematics ,symbols.namesake ,Infinity Laplacian ,Dirichlet boundary condition ,Bounded function ,symbols ,Limit (mathematics) ,0101 mathematics ,Laplace operator ,Quotient ,Mathematics - Abstract
This paper concerns the study of the asymptotic behavior of the solutions to a family of fractional type problems on a bounded domain, satisfying homogeneous Dirichlet boundary conditions. The family of differential operators includes the fractional $$p_n$$ -Laplacian when $$p_n\rightarrow \infty $$ as a particular case, tough it could be extended to a function of the Holder quotient of order s, whose primitive is an Orlicz function satisfying appropriated growth conditions. The limit equation involves the Holder infinity Laplacian.
- Published
- 2021
3. Magnetic fractional order Orlicz–Sobolev spaces
- Author
-
Ariel Martin Salort and Julián Fernández Bonder
- Subjects
Pure mathematics ,General Mathematics ,010102 general mathematics ,Mathematics::Analysis of PDEs ,Order (ring theory) ,Context (language use) ,Type (model theory) ,Space (mathematics) ,Lipschitz continuity ,01 natural sciences ,Sobolev space ,Convergence (routing) ,0101 mathematics ,Laplace operator ,Mathematics - Abstract
In this paper we define the notion of nonlocal magnetic Sobolev spaces with non-standard growth for Lipschitz magnetic fields. In this context we prove a Bourgain - Brezis - Mironescu type formula for functions in this space as well as for sequences of functions. Finally, we deduce some consequences such as the $\Gamma-$convergence of modulars and convergence of solutions for some non-local magnetic Laplacian allowing non-standard growth laws to its local counterpart.
- Published
- 2021
4. Gamma convergence and asymptotic behavior for eigenvalues of nonlocal problems
- Author
-
Juan F. Spedaletti, Analía Silva, and Julián Fernández Bonder
- Subjects
Pure mathematics ,Computer Science::Information Retrieval ,Applied Mathematics ,Mathematics::Spectral Theory ,Mathematics - Analysis of PDEs ,35P30, 35J92, 49R05 ,Convergence (routing) ,FOS: Mathematics ,Discrete Mathematics and Combinatorics ,Fractional Laplacian ,Analysis ,Eigenvalues and eigenvectors ,Analysis of PDEs (math.AP) ,Mathematics - Abstract
In this paper we analyze the asymptotic behavior of several fractional eigenvalue problems by means of Gamma-convergence methods. This method allows us to treat different eigenvalue problems under a unified framework. We are able to recover some known results for the behavior of the eigenvalues of the $p-$fractional laplacian when the fractional parameter $s$ goes to 1, and to extend some known results for the behavior of the same eigenvalue problem when $p$ goes to $\infty$. Finally we analyze other eigenvalue problems not previously covered in the literature., Comment: 17 pages. Submitted
- Published
- 2021
5. Optimal rearrangement problem and normalized obstacle problem in the fractional setting
- Author
-
Hayk Mikayelyan, Julián Fernández Bonder, and Zhiwei Cheng
- Subjects
fractional partial differential equations ,optimization problems ,QA299.6-433 ,Minimization problem ,Mathematics::Analysis of PDEs ,purl.org/becyt/ford/1.1 [https] ,35j60 ,purl.org/becyt/ford/1 [https] ,35r11 ,Mathematics - Analysis of PDEs ,OBSTACLE PROBLEM ,obstacle problem ,FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS ,OPTIMIZATION PROBLEMS ,Obstacle problem ,FOS: Mathematics ,Applied mathematics ,35R11, 35J60, 35R35 ,Laplace operator ,Analysis ,Analysis of PDEs (math.AP) ,Mathematics - Abstract
We consider an optimal rearrangement minimization problem involving the fractional Laplace operator (–Δ)s, 0 < s < 1, and the Gagliardo seminorm |u|s. We prove the existence of the unique minimizer, analyze its properties as well as derive the non-local and highly non-linear PDE it satisfies $$\begin{array}{} \displaystyle -(-{\it\Delta})^s U-\chi_{\{U\leq 0\}}\min\{-(-{\it\Delta})^s U^+;1\}=\chi_{\{U \gt 0\}}, \end{array}$$ which happens to be the fractional analogue of the normalized obstacle problem Δu = χ{u>0}.
- Published
- 2020
6. A Pólya–Szegö principle for general fractional Orlicz–Sobolev spaces
- Author
-
Julián Fernández Bonder, Ariel Martin Salort, and Pablo L. De Nápoli
- Subjects
Mathematics::Functional Analysis ,Numerical Analysis ,Pure mathematics ,Applied Mathematics ,45G05 ,010102 general mathematics ,purl.org/becyt/ford/1.1 [https] ,Mathematics::Classical Analysis and ODEs ,Mathematics::Spectral Theory ,REARRANGEMENT INEQUALITIES ,01 natural sciences ,PÓLYA–SZEGÖ TYPE PRINCIPLE ,purl.org/becyt/ford/1 [https] ,010101 applied mathematics ,Sobolev space ,35R11 ,Computational Mathematics ,Mathematics - Analysis of PDEs ,46E30 ,ORLICZ–SOBOLEV SPACES ,Norm (mathematics) ,0101 mathematics ,Analysis ,Mathematics - Abstract
In this article we prove modular and norm P\'olya-Szeg\"o inequalities in general fractional Orlicz-Sobolev spaces by using the polarization technique. We introduce a general framework which includes the different definitions of theses spaces in the literature, and we establish some of its basic properties such as the density of smooth functions. As a corollary we prove a Rayleigh-Faber-Krahn type inequality for Dirichlet eigenvalues under nonlocal nonstandard growth operators., Comment: 19 pages, some typos fixed and references added
- Published
- 2020
7. A NONLINEAR EIGENVALUE PROBLEM WITH INDEFINITE WEIGHTS RELATED TO THE SOBOLEV TRACE EMBEDDING
- Author
-
Bonder, Julián Fernández and Rossi, Julio D.
- Published
- 2002
8. Fractional order Orlicz-Sobolev spaces
- Author
-
Julián Fernández Bonder and Ariel Martin Salort
- Subjects
Mathematics::Functional Analysis ,Pure mathematics ,46E30, 35R11, 45G05 ,010102 general mathematics ,Mathematics::Classical Analysis and ODEs ,Mathematics::Analysis of PDEs ,01 natural sciences ,Functional Analysis (math.FA) ,Mathematics - Functional Analysis ,Sobolev space ,Mathematics - Analysis of PDEs ,Operator (computer programming) ,0103 physical sciences ,Convergence (routing) ,FOS: Mathematics ,Order (group theory) ,010307 mathematical physics ,0101 mathematics ,Analysis ,Analysis of PDEs (math.AP) ,Mathematics - Abstract
In this paper we define the fractional order Orlicz-Sobolev spaces, and prove its convergence to the classical Orlicz-Sobolev spaces when the fractional parameter $s\uparrow 1$ in the spirit of the celebrated result of Bourgain-Brezis-Mironescu. We then deduce some consequences such as $\Gamma-$convergence of the modulars and convergence of solutions for some fractional versions of the $\Delta_g$ operator as the fractional parameter $s\uparrow 1$., Comment: 28 pages. Submitted
- Published
- 2019
9. A Nonlinear eigenvalue problem with indefinite weights related to the Sobolev trace embedding
- Author
-
Julián Fernández Bonder and Julio D. Rossi
- Subjects
Sobolev space ,Combinatorics ,Sequence ,Trace (linear algebra) ,Monotone polygon ,General Mathematics ,Embedding ,Boundary value problem ,Mathematics::Spectral Theory ,Lambda ,Eigenvalues and eigenvectors ,Mathematics - Abstract
In this paper we study the Sobolev trace embedding $W^{1,p}(\Omega)\hookrightarrow L^p_V(\partial \Omega)$, where $V$ is an indefinite weight. This embedding leads to a nonlinear eigenvalue problem where the eigenvalue appears at the (nonlinear) boundary condition. We prove that there exists a sequence of variational eigenvalues $\lambda_k\nearrow +\infty$ and then show that the first eigenvalue is isolated, simple and monotone with respect to the weight. Then we prove a nonexistence result related to the first eigenvalue and we end this article with the study of the second eigenvalue proving that it coincides with the second variational eigenvalue.
- Published
- 2021
10. Some nonlocal optimal design problems
- Author
-
Juan F. Spedaletti and Julián Fernández Bonder
- Subjects
Optimal design ,GAMMA CONVERGENCE ,Matemáticas ,FRACTIONAL LAPLACIAN ,Applied Mathematics ,010102 general mathematics ,purl.org/becyt/ford/1.1 [https] ,01 natural sciences ,Matemática Pura ,purl.org/becyt/ford/1 [https] ,010101 applied mathematics ,Sobolev space ,SHAPE OPTIMIZATION ,Convergence (routing) ,Applied mathematics ,Shape optimization ,0101 mathematics ,Fractional Laplacian ,CIENCIAS NATURALES Y EXACTAS ,Analysis ,Mathematics - Abstract
In this paper we study two optimal design problems associated to fractional Sobolev spaces Ws,p(Ω). Then we find a relationship between these two problems and finally we investigate the convergence when s↑1. Fil: Fernandez Bonder, Julian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Spedaletti, Juan Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
- Published
- 2018
11. An optimization problem for the first eigenvalue of the p-fractional Laplacian
- Author
-
Luis López Ríos, Julián Fernández Bonder, and Leandro M. Del Pezzo
- Subjects
Optimization problem ,General Mathematics ,010102 general mathematics ,Function (mathematics) ,Mathematics::Spectral Theory ,Eigenfunction ,01 natural sciences ,010101 applied mathematics ,Operator (computer programming) ,Applied mathematics ,0101 mathematics ,Fractional Laplacian ,Eigenvalues and eigenvectors ,Mathematics - Abstract
In this paper we analyze an eigenvalue problem related to the nonlocal p-Laplace operator plus a potential. After reviewing some elementary properties of the first eigenvalue of these operators (existence, positivity of associated eigenfunctions, simplicity and isolation) we investigate the dependence of the first eigenvalue on the potential function and establish the existence of some optimal potentials in some admissible classes.
- Published
- 2018
12. A class of shape optimization problems for some nonlocal operators
- Author
-
Ariel Martin Salort, Antonella Ritorto, and Julián Fernández Bonder
- Subjects
Mathematical optimization ,Class (set theory) ,Matemáticas ,Applied Mathematics ,010102 general mathematics ,purl.org/becyt/ford/1.1 [https] ,010103 numerical & computational mathematics ,Operator theory ,01 natural sciences ,Matemática Pura ,purl.org/becyt/ford/1 [https] ,Algebra ,SHAPE OPTIMIZATION ,FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS ,Shape optimization ,0101 mathematics ,CIENCIAS NATURALES Y EXACTAS ,Analysis ,Mathematics - Abstract
In this work we study a family of shape optimization problem where the state equation is given in terms of a nonlocal operator. Examples of the problems considered are monotone combinations of fractional eigenvalues. Moreover, we also analyze the transition from nonlocal to local state equations. Fil: Fernandez Bonder, Julian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Ritorto, Antonella. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Salort, Ariel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
- Published
- 2017
13. Fractional optimal maximization problem and the unstable fractional obstacle problem
- Author
-
Julián Fernández Bonder, Hayk Mikayelyan, and Zhiwei Cheng
- Subjects
Applied Mathematics ,010102 general mathematics ,Mathematics::Analysis of PDEs ,Maximization ,Mathematics::Spectral Theory ,01 natural sciences ,010101 applied mathematics ,Mathematics - Analysis of PDEs ,Obstacle problem ,FOS: Mathematics ,Applied mathematics ,35R11, 35J60 ,0101 mathematics ,Laplace operator ,Analysis ,Analysis of PDEs (math.AP) ,Mathematics - Abstract
We consider an optimal rearrangement maximization problem involving the fractional Laplace operator $(-\Delta)^s$, $00$ $$(-\Delta)^s u=\chi_{\{u>\alpha\}}.$$, Comment: 10 pages. Submitted
- Published
- 2019
14. Uniqueness of minimal energy solutions for a semilinear problem involving the fractional Laplacian
- Author
-
Julián Fernández Bonder, Juan F. Spedaletti, and Analía Silva
- Subjects
UNIQUENESS RESULTS ,Matemáticas ,Applied Mathematics ,General Mathematics ,purl.org/becyt/ford/1.1 [https] ,Mathematics::Spectral Theory ,Matemática Pura ,purl.org/becyt/ford/1 [https] ,Combinatorics ,Mathematics - Analysis of PDEs ,FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS ,FOS: Mathematics ,Uniqueness ,35R11, 35J60 ,Fractional Laplacian ,CIENCIAS NATURALES Y EXACTAS ,Analysis of PDEs (math.AP) ,Mathematics - Abstract
In this paper we study a semilinear problem for the fractional laplacian that are the counterpart of the Neumann problems in the classical setting. We show uniqueness of minimal energy solutions for small domains., minor modifications, mainly in the introduction
- Published
- 2019
15. Stability of solutions for nonlocal problems
- Author
-
Julián Fernández Bonder and Ariel Martin Salort
- Subjects
Laplace transform ,Applied Mathematics ,010102 general mathematics ,Stability (learning theory) ,01 natural sciences ,010101 applied mathematics ,Nonlinear system ,Mathematics - Analysis of PDEs ,Bounded function ,Convergence (routing) ,FOS: Mathematics ,Applied mathematics ,35R11, 35B35, 45G05 ,0101 mathematics ,Ground state ,Analysis ,Eigenvalues and eigenvectors ,Mathematics ,Analysis of PDEs (math.AP) - Abstract
In this paper we deal with the stability of solutions of fractional $p-$Laplace problems with nonlinear sources when the fractional parameter $s$ goes to 1. We prove a general convergence result for general weak solutions which is applied to study the convergence of ground state solutions of $p-$fractional problems in bounded and unbounded domains as $s$ goes to 1. Moreover, our result applies to treat the stability of $p-$fractional eigenvalues as $s$ goes to 1., Comment: 13 pages
- Published
- 2019
- Full Text
- View/download PDF
16. Optimal Design Problems for the First p-Fractional Eigenvalue with Mixed Boundary Conditions
- Author
-
Julio D. Rossi, Julián Fernández Bonder, and Juan F. Spedaletti
- Subjects
Optimal design ,Shape design ,GAMMA CONVERGENCE ,Matemáticas ,Computer Science::Information Retrieval ,General Mathematics ,FRACTIONAL LAPLACIAN ,010102 general mathematics ,Statistical and Nonlinear Physics ,01 natural sciences ,Measure (mathematics) ,Matemática Pura ,010101 applied mathematics ,Set (abstract data type) ,symbols.namesake ,SHAPE OPTIMIZATION ,Dirichlet boundary condition ,symbols ,Applied mathematics ,Boundary value problem ,0101 mathematics ,Eigenvalues and eigenvectors ,CIENCIAS NATURALES Y EXACTAS ,Mathematics ,Variable (mathematics) - Abstract
In this paper, we study an optimal shape design problem for the first eigenvalue of the fractional p-Laplacian with mixed boundary conditions. The optimization variable is the set where the Dirichlet condition is imposed (that is restricted to have measure equal to a prescribed quantity α). We show existence of an optimal design and analyze the asymptotic behavior when the fractional parameter s converges to 1, and thus obtain asymptotic bounds that are independent of α. Fil: Fernandez Bonder, Julian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Rossi, Julio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Spedaletti, Juan Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
- Published
- 2018
17. Continuity results with respect to domain perturbation for the fractional p-Laplacian
- Author
-
Juan F. Spedaletti, Julián Fernández Bonder, and Carla Baroncini
- Subjects
Matemáticas ,Applied Mathematics ,010102 general mathematics ,Mathematical analysis ,purl.org/becyt/ford/1.1 [https] ,Perturbation (astronomy) ,010103 numerical & computational mathematics ,01 natural sciences ,Fractional calculus ,Matemática Pura ,FRACTIONAL CAPACITY ,purl.org/becyt/ford/1 [https] ,p-Laplacian ,DOMAIN PERTURBATION ,0101 mathematics ,FRACTIONAL P-LAPLACIAN ,CIENCIAS NATURALES Y EXACTAS ,Mathematics - Abstract
In this paper, we give sufficient conditions on the approximating domains in order to obtain the continuity of solutions for the fractional p-Laplacian. These conditions are given in terms of the fractional capacity of the approximating domains. Fil: Baroncini, Carla Antonella. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Fernandez Bonder, Julian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Spedaletti, Juan Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
- Published
- 2018
18. The concentration-compactness principle for fractional order Sobolev spaces in unbounded domains and applications to the generalized fractional Brezis-Nirenberg problem
- Author
-
Analía Silva, Nicolas Saintier, and Julián Fernández Bonder
- Subjects
Pure mathematics ,Matemáticas ,CONCENTRATION-COMPACTNESS PRINCIPLE ,01 natural sciences ,Matemática Pura ,purl.org/becyt/ford/1 [https] ,Operator (computer programming) ,Mathematics - Analysis of PDEs ,UNBOUNDED DOMAINS ,FOS: Mathematics ,35R11, 46E25, 45G05 ,0101 mathematics ,Mathematics ,Applied Mathematics ,010102 general mathematics ,purl.org/becyt/ford/1.1 [https] ,Order (ring theory) ,FRACTIONAL ELLIPTIC-TYPE PROBLEMS ,Mathematics::Spectral Theory ,010101 applied mathematics ,Sobolev space ,Compact space ,Fractional Laplacian ,Nirenberg and Matthaei experiment ,Analysis ,CIENCIAS NATURALES Y EXACTAS ,Analysis of PDEs (math.AP) - Abstract
In this paper we extend the well-known concentration -- compactness principle for the Fractional Laplacian operator in unbounded domains. As an application we show sufficient conditions for the existence of solutions to some critical equations involving the fractional $p-$laplacian in the whole ${\mathbb R}^n$., Comment: 19 pages. Submitted
- Published
- 2018
- Full Text
- View/download PDF
19. A Lyapunov type inequality for indefinite weights and eigenvalue homogenization
- Author
-
Ariel Martin Salort, Julián Fernández Bonder, and Juan Pablo Pinasco
- Subjects
Lyapunov function ,HOMOGENIZATION ,Matemáticas ,Applied Mathematics ,General Mathematics ,Mathematical analysis ,purl.org/becyt/ford/1.1 [https] ,Type inequality ,Homogenization (chemistry) ,Matemática Pura ,purl.org/becyt/ford/1 [https] ,symbols.namesake ,EIGENVALUES ,P-LAPLACIAN ,p-Laplacian ,symbols ,Rayleigh–Faber–Krahn inequality ,Applied mathematics ,Laplace operator ,CIENCIAS NATURALES Y EXACTAS ,LYAPUNOV’S INEQUALITY ,Eigenvalues and eigenvectors ,Mathematics - Abstract
In this paper we prove a Lyapunov type inequality for quasilinear problems with indefinite weights. We show that the first eigenvalue is bounded below in terms of the integral of the weight, instead of the integral of its positive part. We apply this inequality to some eigenvalue homogenization problems with indefinite weights. Fil: Salort, Ariel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina Fil: Fernandez Bonder, Julian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina Fil: Pinasco, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
- Published
- 2015
20. Existence of solution to a critical trace equation with variable exponent
- Author
-
Nicolas Saintier, Julián Fernández Bonder, and Analía Silva
- Subjects
Trace (linear algebra) ,Variable exponent ,Matemáticas ,General Mathematics ,Operator (physics) ,Mathematical analysis ,purl.org/becyt/ford/1.1 [https] ,CRITICAL EXPONENTS ,CONCENTRATION COMPACTNESS ,Matemática Pura ,purl.org/becyt/ford/1 [https] ,Nonlinear system ,SOBOLEV EMBEDDING ,Mountain pass theorem ,Critical exponent ,CIENCIAS NATURALES Y EXACTAS ,VARIABLE EXPONENTS ,Variable (mathematics) ,Mathematics - Abstract
In this paper we study sufficient local conditions for the existence of non-trivial solution to a critical equation for the p(x)-Laplacian where the critical term is placed as a source through the boundary of the domain. The proof relies on a suitable generalization of the concentration - compactness principle for the trace embedding for variable exponent Sobolev spaces and the classical mountain pass theorem. Fil: Fernandez Bonder, Julian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Saintier, Nicolas Bernard Claude. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: Silva, Analia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
- Published
- 2015
21. An extension of a Theorem of V. Šverák to variable exponent spaces
- Author
-
Carla Baroncini and Julián Fernández Bonder
- Subjects
Discrete mathematics ,Dirichlet problem ,Sequence ,Matemáticas ,Applied Mathematics ,purl.org/becyt/ford/1.1 [https] ,Hausdorff space ,General Medicine ,Domain (mathematical analysis) ,Matemática Pura ,purl.org/becyt/ford/1 [https] ,SHAPE OPTIMIZATION ,NONSTANDARD GROWTH ,Bounded function ,Uniform boundedness ,SENSITIVITY ANALYSIS ,Limit (mathematics) ,Laplace operator ,CIENCIAS NATURALES Y EXACTAS ,Analysis ,Mathematics - Abstract
In 1993, V. Šverák proved that if a sequence of uniformly bounded domains Ωn ℝ2 such that Ωn → Ω in the sense of the Hausdorff complementary topology, verify that the number of connected components of its complements are bounded, then the solutions of the Dirichlet problem for the Laplacian with source f ∈ L2(ℝ2) converges to the solution of the limit domain with same source. In this paper, we extend Šverák result to variable exponent spaces. Fil: Baroncini, Carla Antonella. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina Fil: Fernandez Bonder, Julian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
- Published
- 2015
22. Homogenization of Fučík Eigencurves
- Author
-
Ariel Martin Salort, Juan Pablo Pinasco, and Julián Fernández Bonder
- Subjects
HOMOGENIZATION ,Matemáticas ,Mathematics::Number Theory ,General Mathematics ,010102 general mathematics ,purl.org/becyt/ford/1.1 [https] ,01 natural sciences ,Homogenization (chemistry) ,Matemática Pura ,010101 applied mathematics ,purl.org/becyt/ford/1 [https] ,ORDER OF CONVERGENCE ,Rate of convergence ,FUČÍK EIGENVALUES ,Applied mathematics ,0101 mathematics ,CIENCIAS NATURALES Y EXACTAS ,Mathematics - Abstract
In this work we study the convergence of an homogenization problem for half-eigenvalues and Fučík eigencurves. We provide quantitative bounds on the rate of convergence of the curves for periodic homogenization problems. Fil: Fernandez Bonder, Julian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Pinasco, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Salort, Ariel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
- Published
- 2017
23. Eigenvalue homogenisation problem with indefinite weights
- Author
-
Juan Pablo Pinasco, Ariel Martin Salort, and Julián Fernández Bonder
- Subjects
Matemáticas ,General Mathematics ,010102 general mathematics ,purl.org/becyt/ford/1.1 [https] ,01 natural sciences ,Homogenization (chemistry) ,Matemática Pura ,010101 applied mathematics ,purl.org/becyt/ford/1 [https] ,Nonlinear system ,EIGENVALUES ,Applied mathematics ,HOMOGENISATION ,0101 mathematics ,INDEFINITE WEIGHTS ,Eigenvalues and eigenvectors ,CIENCIAS NATURALES Y EXACTAS ,Mathematics ,P-LAPLACE-TYPE PROBLEMS - Abstract
In this work we study the homogenisation problem for nonlinear elliptic equations involving$p$-Laplacian-type operators with sign-changing weights. We study the asymptotic behaviour of variational eigenvalues which consist of a double sequence of eigenvalues. We show that the$k$th positive eigenvalue goes to infinity when the average of the weights is nonpositive, and converges to the$k$th variational eigenvalue of the limit problem when the average is positive for any$k\geq 1$.
- Published
- 2016
24. On the Sobolev embedding theorem for variable exponent spaces in the critical range
- Author
-
Analía Silva, Nicolas Saintier, and Julián Fernández Bonder
- Subjects
Pure mathematics ,Variable exponent ,Concentration compactness ,Applied Mathematics ,Sobolev embedding ,Variable exponents ,Convexity ,Functional Analysis (math.FA) ,Sobolev inequality ,Mathematics - Functional Analysis ,Mathematics - Analysis of PDEs ,Critical exponents ,46E35, 35B33 ,FOS: Mathematics ,Order (group theory) ,Critical range ,Constant (mathematics) ,Critical exponent ,Analysis ,Analysis of PDEs (math.AP) ,Variable (mathematics) ,Mathematics - Abstract
In this paper we study the Sobolev embedding theorem for variable exponent spaces with critical exponents. We find conditions on the best constant in order to guaranty the existence of extremals. The proof is based on a suitable refinement of the estimates in the Concentration--Compactness Theorem for variable exponents and an adaptation of a convexity argument due to P.L. Lions, F. Pacella and M. Tricarico., Comment: 15 pages, submitted
- Published
- 2012
25. Refined asymptotics for eigenvalues on domains of infinite measure
- Author
-
Julián Fernández Bonder, Juan Pablo Pinasco, and Ariel Martin Salort
- Subjects
Matemáticas ,Open set ,Asymptotic distribution ,Measure (mathematics) ,Dirichlet distribution ,Matemática Pura ,purl.org/becyt/ford/1 [https] ,11N37 ,symbols.namesake ,Mathematics - Analysis of PDEs ,EIGENVALUES ,FOS: Mathematics ,35P30 ,Number Theory (math.NT) ,P-LAPLACE OPERATOR ,Eigenvalues and eigenvectors ,Mathematics ,Dirichlet problem ,Mathematics - Number Theory ,LATTICE POINTS ,p-Laplace operator ,Applied Mathematics ,Mathematical analysis ,Lattice points ,purl.org/becyt/ford/1.1 [https] ,Eigenvalues ,Function (mathematics) ,Mathematics::Spectral Theory ,symbols ,Laplace operator ,CIENCIAS NATURALES Y EXACTAS ,Analysis ,Analysis of PDEs (math.AP) - Abstract
In this work we study the asymptotic distribution of eigenvalues in one-dimensional open sets. The method of proof is rather elementary, based on the Dirichlet lattice points problem, which enable us to consider sets with infinite measure. Also, we derive some estimates for the the spectral counting function of the Laplace operator on unbounded two-dimensional domains., Comment: 18 pages, 2 figures
- Published
- 2010
- Full Text
- View/download PDF
26. Precise asymptotic of eigenvalues of resonant quasilinear systems
- Author
-
Juan Pablo Pinasco and Julián Fernández Bonder
- Subjects
Work (thermodynamics) ,Matemáticas ,Type (model theory) ,Matemática Pura ,purl.org/becyt/ford/1 [https] ,Mathematics - Spectral Theory ,Mathematics - Analysis of PDEs ,34L15 ,P-LAPLACE ,FOS: Mathematics ,ELLIPTIC SYSTEM ,Order (group theory) ,Spectral Theory (math.SP) ,Eigenvalues and eigenvectors ,Mathematics ,Coupling ,Sequence ,Elliptic system ,Applied Mathematics ,Mathematical analysis ,purl.org/becyt/ford/1.1 [https] ,34L30 ,Mathematics::Spectral Theory ,35P30 ,35P15 ,p-Laplace ,EIGENVALUE BOUNDS ,Eigenvalue bounds ,CIENCIAS NATURALES Y EXACTAS ,Analysis ,Analysis of PDEs (math.AP) - Abstract
In this work we study the sequence of variational eigenvalues of a system of resonant type involving $p-$ and $q-$laplacians on $\Omega \subset \R^N$, with a coupling term depending on two parameters $\alpha$ and $\beta$ satisfying $\alpha/p + \beta/q = 1$. We show that the order of growth of the $k^{th}$ eigenvalue depends on $\alpha+\beta$, $\lam_k = O(k^{\frac{\alpha+\beta}{N}})$., Comment: Minor changes, Theorem 1.4 added
- Published
- 2010
27. An optimization problem for the first weighted eigenvalue problem plus a potential
- Author
-
Leandro M. Del Pezzo and Julián Fernández Bonder
- Subjects
Optimization ,Class (set theory) ,Optimization problem ,Matemáticas ,Applied Mathematics ,General Mathematics ,Eigenvalue ,purl.org/becyt/ford/1.1 [https] ,49K20, 35P15, 35J10 ,Mathematics::Spectral Theory ,Matemática Pura ,purl.org/becyt/ford/1 [https] ,Combinatorics ,Mathematics - Analysis of PDEs ,Optimization and Control (math.OC) ,FOS: Mathematics ,Mathematics - Optimization and Control ,CIENCIAS NATURALES Y EXACTAS ,Eigenvalues and eigenvectors ,Analysis of PDEs (math.AP) ,Mathematics - Abstract
In this paper, we study the problem of minimizing the first eigenvalue of the $p-$Laplacian plus a potential with weights, when the potential and the weight are allowed to vary in the class of rearrangements of a given fixed potential $V_0$ and weight $g_0$. Our results generalized those obtained in [9] and [5]., 15 pages
- Published
- 2010
28. Multiple solutions for the -Laplace operator with critical growth
- Author
-
Julián Fernández Bonder, Analía Silva, and Pablo L. De Nápoli
- Subjects
Laplace's equation ,Applied Mathematics ,Mathematical analysis ,Mathematics::Analysis of PDEs ,35J20 ,35J60 ,Domain (mathematical analysis) ,Sobolev space ,Elliptic curve ,symbols.namesake ,Mathematics - Analysis of PDEs ,Compact space ,Dirichlet boundary condition ,FOS: Mathematics ,Exponent ,symbols ,Laplace operator ,Analysis ,Analysis of PDEs (math.AP) ,Mathematical physics ,Mathematics - Abstract
In this note we show the existence of at least three nontrivial solutions to the following quasilinear elliptic equation $-\Delta_p u = |u|^{p^*-2}u + \lambda f(x,u)$ in a smooth bounded domain $\Omega$ of $\R^N$ with homogeneous Dirichlet boundary conditions on $\partial\Omega$, where $p^*=Np/(N-p)$ is the critical Sobolev exponent and $\Delta_p u =div(|\nabla u|^{p-2}\nabla u)$ is the $p-$laplacian. The proof is based on variational arguments and the classical concentrated compactness method., Comment: Results improved, hypotheses removed
- Published
- 2009
29. Continuity of the Explosion Time in Stochastic Differential Equations
- Author
-
Julián Fernández Bonder, Julio D. Rossi, and Pablo Groisman
- Subjects
Statistics and Probability ,Differential equation ,Applied Mathematics ,Mathematical analysis ,Exact differential equation ,Integrating factor ,Stochastic partial differential equation ,Stochastic differential equation ,symbols.namesake ,Ordinary differential equation ,Runge–Kutta method ,symbols ,Statistics, Probability and Uncertainty ,Differential algebraic equation ,Mathematics - Abstract
Stochastic ordinary differential equations may have solutions that explode in finite time. In this article we prove the continuity of the explosion time with respect to the different parameters appearing in the equation, such as the initial datum, the drift, and the diffusion.
- Published
- 2009
30. AN OPTIMIZATION PROBLEM RELATED TO THE BEST SOBOLEV TRACE CONSTANT IN THIN DOMAINS
- Author
-
Julián Fernández Bonder, Julio D. Rossi, and Carola-Bibiane Schönlieb
- Subjects
Sobolev space ,Combinatorics ,Pure mathematics ,Optimization problem ,Trace (linear algebra) ,Applied Mathematics ,General Mathematics ,Bounded function ,Embedding ,Constant (mathematics) ,Domain (mathematical analysis) ,Eigenvalues and eigenvectors ,Mathematics - Abstract
Let Ω ⊂ ℝNbe a bounded, smooth domain. We deal with the best constant of the Sobolev trace embedding W1,p(Ω) ↪ Lq(∂Ω) for functions that vanish in a subset A ⊂ Ω, which we call the hole, i.e. we deal with the minimization problem [Formula: see text] for functions that verify u|A= 0. It is known that there exists an optimal hole that minimizes the best constant SAamong subsets of Ω of the prescribed volume.In this paper, we look for optimal holes and extremals in thin domains. We find a limit problem (when the thickness of the domain goes to zero), that is a standard Neumann eigenvalue problem with weights and prove that when the domain is contracted to a segment, it is better to concentrate the hole on one side of the domain.
- Published
- 2008
31. Estimates for eigenvalues of quasilinear elliptic systems. Part II
- Author
-
Julián Fernández Bonder and Juan Pablo Pinasco
- Subjects
Laplace's equation ,Matrix differential equation ,Elliptic system ,Applied Mathematics ,Mathematical analysis ,Value (computer science) ,Function (mathematics) ,Mathematics::Spectral Theory ,Type (model theory) ,Dirichlet eigenvalue ,p-laplacian ,Eigenvalue bounds ,Analysis ,Eigenvalues and eigenvectors ,Eigenvalue perturbation ,Mathematics - Abstract
In this paper we find explicit lower bounds for Dirichlet eigenvalues of a weighted quasilinear elliptic system of resonant type in terms of the eigenvalues of a single p -Laplace equation. Also we obtain asymptotic bounds by studying the spectral counting function which is defined as the number of eigenvalues smaller than a given value.
- Published
- 2008
32. The best Sobolev trace constant in a domain with oscillating boundary
- Author
-
Julián Fernández Bonder, Julio D. Rossi, and Rafael Orive
- Subjects
Sobolev space ,Amplitude ,Oscillation ,Applied Mathematics ,Bounded function ,Mathematical analysis ,Embedding ,Homogenization (chemistry) ,Analysis ,Eigenvalues and eigenvectors ,Trace operator ,Mathematics - Abstract
In this paper we study homogenization problems for the best constant for the Sobolev trace embedding W 1 , p ( Ω ) ↪ L q ( ∂ Ω ) in a bounded smooth domain when the boundary is perturbed by adding an oscillation. We find that there exists a critical size of the amplitude of the oscillations for which the limit problem has a weight on the boundary. For sizes larger than critical the best trace constant goes to zero and for sizes smaller than critical it converges to the best constant in the domain without perturbations.
- Published
- 2007
33. Convergence rate for some quasilinear eigenvalues homogenization problems
- Author
-
Ariel Martin Salort, Juan Pablo Pinasco, and Julián Fernández Bonder
- Subjects
Homogenization ,Quasilinear operators ,Matemáticas ,Applied Mathematics ,Mathematical analysis ,purl.org/becyt/ford/1.1 [https] ,Eigenvalues ,Mathematics::Spectral Theory ,Homogenization (chemistry) ,Matemática Pura ,purl.org/becyt/ford/1 [https] ,Elliptic operator ,Nonlinear system ,Rate of convergence ,Convergence rate ,Analysis ,Eigenvalues and eigenvectors ,CIENCIAS NATURALES Y EXACTAS ,Mathematics - Abstract
In this work we study the homogenization problem for (nonlinear) eigenvalues of quasilinear elliptic operators. We prove convergence of the first and second eigenvalues and, in the case where the operator is independent of ε, convergence of the full (variational) spectrum together whit an explicit in k and in ε order of convergence. Fil: Fernandez Bonder, Julian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina Fil: Pinasco, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina Fil: Salort, Ariel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina
- Published
- 2015
34. A mass transportation approach for Sobolev inequalities in variable exponent spaces
- Author
-
Analía Silva, Julián Fernández Bonder, and Juan Pablo Borthagaray
- Subjects
Pure mathematics ,Matemáticas ,General Mathematics ,Algebraic geometry ,01 natural sciences ,Matemática Pura ,Sobolev inequality ,purl.org/becyt/ford/1 [https] ,Mathematics - Analysis of PDEs ,FOS: Mathematics ,Sobolev inequalities ,0101 mathematics ,Mass transportation ,Mathematics ,Discrete mathematics ,Variable exponent ,010102 general mathematics ,purl.org/becyt/ford/1.1 [https] ,46E35, 49J40 ,Variable exponents ,010101 applied mathematics ,Number theory ,Exponent ,Constant (mathematics) ,CIENCIAS NATURALES Y EXACTAS ,Analysis of PDEs (math.AP) - Abstract
In this paper we provide a proof of the Sobolev-Poincar\'e inequality for variable exponent spaces by means of mass transportation methods. The importance of this approach is that the method is exible enough to deal with different inequalities. As an application, we also deduce the Sobolev-trace inequality improving the result obtained by Fan., Comment: 12 pages
- Published
- 2015
- Full Text
- View/download PDF
35. A shape optimization problem for Steklov eigenvalues in oscillating domains
- Author
-
Juan F. Spedaletti and Julián Fernández Bonder
- Subjects
Optimal design ,Control and Optimization ,Steklov eigenvalues ,Matemáticas ,01 natural sciences ,Domain (mathematical analysis) ,Matemática Pura ,purl.org/becyt/ford/1 [https] ,Mathematics - Analysis of PDEs ,35P30, 35J92, 49R05 ,Shape optimization ,Gamma convergence ,FOS: Mathematics ,Shape optimization problem ,0101 mathematics ,Eigenvalues and eigenvectors ,Mathematics ,010102 general mathematics ,Mathematical analysis ,purl.org/becyt/ford/1.1 [https] ,Mathematics::Spectral Theory ,010101 applied mathematics ,Computational Mathematics ,Nonlinear system ,Control and Systems Engineering ,Diffeomorphism ,CIENCIAS NATURALES Y EXACTAS ,Analysis of PDEs (math.AP) - Abstract
In this paper we study the asymptotic behavior of some optimal design problems related to nonlinear Steklov eigenvalues, under irregular (but diffeomorphic) perturbations of the domain., Comment: Some typos fixed
- Published
- 2015
- Full Text
- View/download PDF
36. On the best Sobolev trace constant and extremals in domains with holes
- Author
-
Julio D. Rossi, Julián Fernández Bonder, and Noemi Wolanski
- Subjects
Sobolev space ,Mathematics(all) ,Eigenvalue optimization problems ,Lebesgue measure ,General Mathematics ,Bounded function ,p-Laplacian ,Mathematical analysis ,p-capacity ,Ball (mathematics) ,Sobolev trace constant ,Mathematics - Abstract
We study the dependence on the subset A ⊂ Ω of the Sobolev trace constant for functions defined in a bounded domain Ω that vanish in the subset A. First we find that there exists an optimal subset that makes the trace constant smaller among all the subsets with prescribed and positive Lebesgue measure. In the case that Ω is a ball we prove that there exists an optimal hole that is spherically symmetric. In the case p = 2 we prove that every optimal hole is spherically symmetric. Then, we study the behavior of the best constant when the hole is allowed to have zero Lebesgue measure. We show that this constant depends continuously on the subset and we discuss when it is equal to the Sobolev trace constant without the vanishing restriction. © 2005 Elsevier SAS. All rights reserved. Fil:Fernández Bonder, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Wolanski, N. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
- Published
- 2006
37. Optimization of the first Steklov eigenvalue in domains with holes: a shape derivative approach
- Author
-
Pablo Groisman, Julián Fernández Bonder, and Julio D. Rossi
- Subjects
Sobolev space ,Trace (linear algebra) ,Applied Mathematics ,Mathematical analysis ,Ball (mathematics) ,Derivative ,Constant (mathematics) ,Rayleigh quotient ,Finite element method ,Eigenvalues and eigenvectors ,Mathematics - Abstract
The best Sobolev trace constant is given by the first eigenvalue of a Steklov-like problem. We deal with minimizers of the Rayleigh quotient � u� 2 H 1(�) /� u� 2 L2(∂�) for functions that vanish in a subset A ⊂ � , which we call the hole. We look for holes that minimize the best Sobolev trace constant among subsets ofwith prescribed volume. First, we find a formula for the first vari- ation of the first eigenvalue with respect to the hole. As a consequence of this formula, we prove that whenis a ball the symmetric hole (a centered ball) is critical when we consider deformations that preserves volume but is not optimal. Finally, we prove that by the Finite Element Method we can approximate the op- timal configuration and, by means of the shape derivative, we design an algorithm to compute the discrete optimal holes.
- Published
- 2006
38. An optimization problem for the first eigenvalue of the $p-$Laplacian plus a potential
- Author
-
Leandro M. Del Pezzo and Julián Fernández Bonder
- Subjects
Optimization problem ,Applied Mathematics ,Convex set ,Linear matrix inequality ,General Medicine ,Subderivative ,Mathematics::Spectral Theory ,Nonlinear programming ,Combinatorics ,Bounded function ,Convex optimization ,Applied mathematics ,Analysis ,Conic optimization ,Mathematics - Abstract
In this paper we study the optimization problem for the first eigenvalue of the $p-$Laplacian plus a potential $V$ with respect to $V$, when the potential is restricted to a bounded, closed and convex set of $L^q(\Omega)$.
- Published
- 2006
39. Eigenvalues of the p-Laplacian in fractal strings with indefinite weights
- Author
-
Julián Fernández Bonder and Juan Pablo Pinasco
- Subjects
Weight function ,Pure mathematics ,Applied Mathematics ,p-Laplacian ,Minkowski–Bouligand dimension ,Boundary (topology) ,Eigenvalues ,Function (mathematics) ,Combinatorics ,Fractal ,Asymptotic ,Analysis ,Eigenvalues and eigenvectors ,Mathematics ,Sign (mathematics) - Abstract
In this paper we study the spectral counting function of the weighted p-Laplacian in fractal strings, where the weight is allowed to change sign. We obtain error estimates related to the interior Minkowski dimension of the boundary. We also find the asymptotic behavior of eigenvalues.
- Published
- 2005
40. Regularity of the Free Boundary in an Optimization Problem Related to the Best Sobolev Trace Constant
- Author
-
Julián Fernández Bonder, Julio D. Rossi, and Noemi Wolanski
- Subjects
Sobolev space ,Control and Optimization ,Optimization problem ,Applied Mathematics ,Minimization problem ,Mathematical analysis ,Free boundary problem ,Immersion (mathematics) ,Omega ,Eigenvalues and eigenvectors ,Mathematics - Abstract
In this paper we study the regularity properties of a free boundary problem arising in the optimization of the best Sobolev trace constant in the immersion $H^1(\Omega)\hookrightarrow L^q(\partial\Omega)$ for functions that vanish in a subset of $\Omega$. This problem is also related to a minimization problem for Steklov eigenvalues.
- Published
- 2005
41. Symmetry properties for the extremals of the Sobolev trace embedding
- Author
-
Julio D. Rossi, Enrique Lami Dozo, and Julián Fernández Bonder
- Subjects
Pure mathematics ,Trace (linear algebra) ,Matemáticas ,Applied Mathematics ,Mathematical analysis ,Matemática Aplicada ,Nonlinear boundary conditions ,Sobolev space ,SOBOLEV TRACE EMBEDDING ,NONLINEAR BOUNDARY CONDITIONS ,Ball (bearing) ,Embedding ,Boundary value problem ,Symmetry (geometry) ,CIENCIAS NATURALES Y EXACTAS ,Mathematical Physics ,Analysis ,Mathematics - Abstract
In this article we study symmetry properties of the extremals for the Sobolev trace embedding H1(B(0, µ)) ,→ Lq(∂B(0, µ)) with 1 ≤ q ≤2(N − 1)/(N − 2) for different values of µ. These extremals u are solutions of the problem {∆u = u in B(0, µ), ∂u_∂η = λ|u|q−2u on ∂B(0, µ). We find that, for 1 ≤ q < 2(N − 1)/(N − 2), there exists a unique normalized extremal u, which is positive and has to be radial, for µ small enough. For the critical case, q = 2(N−1)/(N−2), as a consequence of the symmetry properties for small balls, we conclude the existence of radial extremals. Finally, for 1 < q ≤ 2, we show that a radial extremal exists for every ball. Dans cet article nous étudions des propriétés de symétrie des extrémales de l’immersion de Sobolev H1(B(0, µ)) →Lq (∂B(0, µ)), où 1 q 2(N − 1)/(N − 2) en fonction du rayon µ. Ces extrémales sont solutions du problème {∆= u dans B(0, µ), ∂u_∂η = λ|u| q−2u sur ∂B(0, µ). Nous trouvons que, pour 1 ≤ q < 2(N − 1)/(N − 2), il existe une extrémale normalisée unique u, qui est positive et radiale, pour µ suffisamment petite. Dans le cas critique q = 2(N − 1)/(N − 2), comme conséquence des propriétés de symétrie pour des petits rayons, nous déduisons l’existence d’extrémales. Finalement, pour 1 < q ≤ 2, nous montrons qu’une extrémale radiale existe pour toute boule. Fil: Fernandez Bonder, Julian. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Lami Dozo, Enrique Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina Fil: Rossi, Julio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
- Published
- 2004
42. The behavior of the best Sobolev trace constant and extremals in thin domains
- Author
-
Julio D. Rossi, Julián Fernández Bonder, and Sandra Martínez
- Subjects
Applied Mathematics ,p-Laplacian ,Mathematical analysis ,Nonlinear boundary conditions ,Sobolev space ,Sobolev trace constants ,Bounded function ,Immersion (mathematics) ,Special case ,Analysis ,Eigenvalues and eigenvectors ,Eigenvalue perturbation ,Eigenvalue problems ,Mathematics - Abstract
In this paper, we study the asymptotic behavior of the best Sobolev trace constant and extremals for the immersion W1,p(Ω) Lq(∂Ω) in a bounded smooth domain when it is contracted in one direction. We find that the limit problem, when rescaled in a suitable way, is a Sobolev-type immersion in weighted spaces over a projection of Ω, W1,p(P(Ω), α) Lq(P(Ω), β). For the special case p = q, this problem leads to an eigenvalue problem with a nonlinear boundary condition. We also study the convergence of the eigenvalues and eigenvectors in this case. © 2003 Elsevier Inc. All rights reserved. Fil:Fernández Bonder, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Martínez, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
- Published
- 2004
43. Asymptotic behavior of the eigenvalues of the one-dimensional weighted p-Laplace operator
- Author
-
Juan Pablo Pinasco and Julián Fernández Bonder
- Subjects
Dimension (vector space) ,Differential equation ,General Mathematics ,Mathematical analysis ,Function (mathematics) ,Mathematics::Spectral Theory ,Remainder ,Minimax ,Laplace operator ,Eigenvalues and eigenvectors ,Term (time) ,Mathematics - Abstract
In this paper we study the spectral counting function for the weighted p-laplacian in one dimension. First, we prove that all the eigenvalues can be obtained by a minimax charac- terization and then we show the existence of a Weyl-type leading term. Finally we find estimates for the remainder term.
- Published
- 2003
44. Uniform Bounds for the Best Sobolev Trace Constant
- Author
-
Julio D. Rossi, Raúl Ferreira, and Julián Fernández Bonder
- Subjects
Sobolev space ,Discrete mathematics ,Section (category theory) ,Dirichlet eigenvalue ,Trace (linear algebra) ,General Mathematics ,p-Laplacian ,Statistical and Nonlinear Physics ,Limit (mathematics) ,Constant (mathematics) ,Mathematics ,Sobolev inequality - Abstract
We study the Sobolev trace embedding W1,p(Ω) ↪ Lq(∂Ω), looking at the dependence of the best constant and the extremals on p and q. We prove that there exists a uniform bound (independent of (p, q)) for the best constant if and only if (p, q) lies far from (N, ∞). Also we study some limit cases, q = ∞ with p > N or p = ∞ with 1 ≤ q ≤ ∞.
- Published
- 2003
45. A fourth order elliptic equation with nonlinear boundary conditions
- Author
-
Julio D. Rossi and Julián Fernández Bonder
- Subjects
Elliptic curve ,Quarter period ,Elliptic partial differential equation ,Applied Mathematics ,Mathematical analysis ,Free boundary problem ,Mixed boundary condition ,Boundary value problem ,Analysis ,Poincaré–Steklov operator ,Energy functional ,Mathematics - Published
- 2002
46. On numerical blow-up sets
- Author
-
Julio D. Rossi, Julián Fernández Bonder, and Pablo Groisman
- Subjects
Nonlinear system ,Partial differential equation ,Applied Mathematics ,General Mathematics ,Mathematical analysis ,Mathematics::Analysis of PDEs ,Boundary (topology) ,Heat equation ,Mixed boundary condition ,Boundary value problem ,Robin boundary condition ,Domain (mathematical analysis) ,Mathematics - Abstract
In this paper we study numerical blow-up sets for semidicrete approximations of the heat equation with nonlinear boundary conditions. We prove that the blow-up set either concentrates near the boundary or is the whole domain.
- Published
- 2002
47. Simultaneousvs.non-simultaneous blow-up in numerical approximations of a parabolic system with non-linear boundary conditions
- Author
-
Julián Fernández Bonder, Gabriel Acosta, Pablo Groisman, and Julio D. Rossi
- Subjects
Numerical Analysis ,Applied Mathematics ,Numerical analysis ,Mathematical analysis ,Mathematics::Analysis of PDEs ,Finite difference method ,Parabolic partial differential equation ,Domain (mathematical analysis) ,Computational Mathematics ,Maximum principle ,Modeling and Simulation ,Bounded function ,Heat equation ,Boundary value problem ,Analysis ,Mathematics - Abstract
We study the asymptotic behavior of a semi-discrete numerical approximation for a pair of heat equations ut = Δu , vt = Δv in Ω x (0,T ); fully coupled by the boundary conditions , on ∂Ω x (0,T ), where Ω is a bounded smooth domain in . We focus in the existence or not of non-simultaneous blow-up for a semi-discrete approximation (U,V) . We prove that if U blows up in finite time then V can fail to blow up if and only if p 11 > 1 and p 21 11 - 1) , which is the same condition as the one for non-simultaneous blow-up in the continuous problem. Moreover, we find that if the continuous problem has non-simultaneous blow-up then the same is true for the discrete one. We also prove some results about the convergence of the scheme and the convergence of the blow-up times.
- Published
- 2002
48. Numerical approximation of a parabolic problem with a nonlinear boundary condition in several space dimensions
- Author
-
Julio D. Rossi, Pablo Groisman, Julián Fernández Bonder, and Gabriel Acosta
- Subjects
Applied Mathematics ,Bounded function ,Mathematical analysis ,Mathematics::Analysis of PDEs ,Discrete Mathematics and Combinatorics ,Order of accuracy ,Heat equation ,Boundary value problem ,Mixed boundary condition ,Parabolic partial differential equation ,Domain (mathematical analysis) ,Numerical stability ,Mathematics - Abstract
In this paper we study the asymptotic behavior of a semidiscrete numerical approximation for the heat equation, $u_t = \Delta u$, in a bounded smooth domain with a nonlinear flux boundary condition, $(\partial u)/(\partial\eta)= u^p$. We focus in the behavior of blowing up solutions. We prove that every numerical solution blows up in finite time if and only if $p > 1$ and that the numerical blow-up time converges to the continuous one as the mesh parameter goes to zero. Also we show that the blow-up rate for the numerical scheme is different from the continuous one. Nevertheless we find that the blow-up set for the numerical approximations is contained in a small neighborhood of the blow-up set of the continuous problem when the mesh parameter is small enough.
- Published
- 2002
49. An optimization problem for nonlinear Steklov eigenvalues with a boundary potential
- Author
-
Julián Fernández Bonder, Graciela Olga Giubergia, and Fernando Mazzone
- Subjects
Optimization problem ,Eigenvalue optimization ,Steklov eigenvalues ,Matemáticas ,Applied Mathematics ,Boundary potential ,p-Laplacian ,purl.org/becyt/ford/1.1 [https] ,Function (mathematics) ,Mathematics::Spectral Theory ,35J70 ,Matemática Pura ,purl.org/becyt/ford/1 [https] ,Nonlinear system ,Mathematics - Analysis of PDEs ,FOS: Mathematics ,Uniform boundedness ,Applied mathematics ,Analysis ,Eigenvalues and eigenvectors ,CIENCIAS NATURALES Y EXACTAS ,Mathematics ,Analysis of PDEs (math.AP) - Abstract
In this paper, we analyze an optimization problem for the first (nonlinear) Steklov eigenvalue plus a boundary potential with respect to the potential function which is assumed to be uniformly bounded and with fixed $L^1$-norm., Comment: 10 pages
- Published
- 2014
50. Existence Results for the p-Laplacian with Nonlinear Boundary Conditions
- Author
-
Julio D. Rossi and Julián Fernández Bonder
- Subjects
Applied Mathematics ,p-Laplacian ,Mathematical analysis ,Existence theorem ,Boundary (topology) ,Domain (mathematical analysis) ,Homeomorphism ,nonlinear boundary conditions ,Bounded function ,Boundary value problem ,Laplace operator ,Analysis ,Mathematics - Abstract
In this paper we study the existence of nontrivial solutions for the problem Δpu = |u|p − 2u in a bounded smooth domain Ω ⊂ RN, with a nonlinear boundary condition given by |∇u|p − 2∂u/∂ν = f(u) on the boundary of the domain. The proofs are based on variational and topological arguments.
- Published
- 2001
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.