11 results on '"Duboscq, Romain"'
Search Results
2. Numerical Simulations on Nonlinear Quantum Graphs with the GraFiDi Library
- Author
-
Besse, Christophe, Duboscq, Romain, and Coz, Stefan Le
- Subjects
Mathematics - Analysis of PDEs ,Mathematics - Numerical Analysis ,Nonlinear Sciences - Pattern Formation and Solitons - Abstract
Nonlinear quantum graphs are metric graphs equipped with a nonlinear Schr{\"o}dinger equation. Whereas in the last ten years they have known considerable developments on the theoretical side, their study from the numerical point of view remains in its early stages. The goal of this paper is to present the Grafidi library, a Python library which has been developed with the numerical simulation of nonlinear Schr{\"o}dinger equations on graphs in mind. We will show how, with the help of the Grafidi library, one can implement the popular normalized gradient flow and nonlinear conjugate gradient flow methods to compute ground states of a nonlinear quantum graph. We will also simulate the dynamics of the nonlinear Schr{\"o}dinger equation with a Crank-Nicolson relaxation scheme and a Strang splitting scheme. Finally, in a series of numerical experiments on various types of graphs, we will compare the outcome of our numerical calculations for ground states with the existing theoretical results, thereby illustrating the versatility and efficiency of our implementations in the framework of the Grafidi library.
- Published
- 2021
3. Entropy minimization for many-body quantum systems
- Author
-
Duboscq, Romain and Pinaud, Olivier
- Subjects
Mathematics - Analysis of PDEs - Abstract
The problem considered here is motivated by a work by B. Nachtergaele and H.T. Yau where the Euler equations of fluid dynamics are derived from manybody quantum mechanics, see [10]. A crucial concept in their work is that of local quantum Gibbs states, which are quantum statistical equilibria with prescribed particle, current, and energy densities at each point of space (here R d , d $\ge$ 1). They assume that such local Gibbs states exist, and show that if the quantum system is initially in a local Gibbs state, then the system stays, in an appropriate asymptotic limit, in a Gibbs state with particle, current, and energy densities now solutions to the Euler equations. Our main contribution in this work is to prove that such local quantum Gibbs states can be constructed from prescribed densities under mild hypotheses, in both the fermionic and bosonic cases. The problem consists in minimizing the von Neumann entropy in the quantum grand canonical picture under constraints of local particle, current, and energy densities. The main mathematical difficulty is the lack of compactness of the minimizing sequences to pass to the limit in the constraints. The issue is solved by defining auxiliary constrained optimization problems, and by using some monotonicity properties of equilibrium entropies.
- Published
- 2021
- Full Text
- View/download PDF
4. Gradient Flow Approach to the Calculation of Stationary States on Nonlinear Quantum Graphs
- Author
-
Besse, Christophe, Duboscq, Romain, and Coz, Stefan Le
- Subjects
Mathematics - Analysis of PDEs ,Mathematics - Numerical Analysis - Abstract
We introduce and implement a method to compute stationary states of nonlinear Schr\''odinger equations on metric graphs. Stationary states are obtained as local minimizers of the nonlinear Schr\''odinger energy at fixed mass. Our method is based on a normalized gradient flow for the energy (i.e. a gradient flow projected on a fixed mass sphere) adapted to the context of nonlinear quantum graphs. We first prove that, at the continuous level, the normalized gradient flow is well-posed, mass-preserving, energy diminishing and converges (at least locally) towards stationary states. We then establish the link between the continuous flow and its discretized version. We conclude by conducting a series of numerical experiments in model situations showing the good performance of the discrete flow to compute stationary states. Further experiments as well as detailed explanation of our numerical algorithm are given in a companion paper.
- Published
- 2020
5. Vortex patterns in the almost-bosonic anyon gas
- Author
-
Correggi, Michele, Duboscq, Romain, Lundholm, Douglas, and Rougerie, Nicolas
- Subjects
Condensed Matter - Quantum Gases ,Mathematical Physics ,Mathematics - Analysis of PDEs ,Mathematics - Numerical Analysis ,Quantum Physics - Abstract
We study theoretically and numerically the ground state of a gas of 2D abelian anyons in an external trapping potential. We treat anyon statistics in the magnetic gauge picture, perturbatively around the bosonic end. This leads to a mean-field energy functional, whose ground state displays vortex lattices similar to those found in rotating Bose-Einstein condensates. A crucial difference is however that the vortex density is proportional to the underlying matter density of the gas.
- Published
- 2019
- Full Text
- View/download PDF
6. On Strichartz estimates for a dispersion modulated by a time-dependent deterministic noise
- Author
-
Duboscq, Romain
- Subjects
Mathematics - Analysis of PDEs - Abstract
We address the Cauchy problem for a nonlinear Schr{\"o}dinger equation where the dispersion is modulated by a deterministic noise. The noise is understood as the derivative of a self-affine function of order H $\in$ (0, 1). Due to the self-similarity of the noise, we obtain modified Strichartz estimates which enables us to prove the global well-posedness of the equation for L2-supercritical nonlinearities. This is an occurence of regularization by noise in a purely deterministic context.
- Published
- 2018
7. On a stochastic Hardy-Littlewood-Sobolev inequality with application to Strichartz estimates for the white noise dispersion
- Author
-
Duboscq, Romain and Réveillac, Anthony
- Subjects
Mathematics - Analysis of PDEs ,Mathematics - Probability - Abstract
In this paper, we investigate a stochastic Hardy-Littlewood-Sobolev inequality. Due to the stochastic nature of the inequality, the relation between the exponents of intgrability is modified. This modification can be understood as a regularization by noise phenomenon. As a direct application, we derive Strichartz estimates for the white noise dispersion which enables us to address a conjecture from [3].
- Published
- 2017
8. Stochastic regularization effects of semi-martingales on random functions
- Author
-
Duboscq, Romain and Réveillac, Anthony
- Subjects
Mathematics - Probability ,Mathematics - Analysis of PDEs ,Mathematics - Functional Analysis - Abstract
In this paper we address an open question formulated in [17]. That is, we extend the It{\^o}-Tanaka trick, which links the time-average of a deterministic function f depending on a stochastic process X and F the solution of the Fokker-Planck equation associated to X, to random mappings f. To this end we provide new results on a class of adpated and non-adapted Fokker-Planck SPDEs and BSPDEs.
- Published
- 2015
9. Gradient Flow Approach to the Calculation of Ground States on Nonlinear Quantum Graphs
- Author
-
Besse, Christophe, Duboscq, Romain, Coz, Stefan Le, Institut de Mathématiques de Toulouse UMR5219 (IMT), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1)-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences Appliquées (INSA), ANR-17-CE40-0025,Nabuco,Frontières numériques et couplages(2017), ANR-11-IDEX-0002,UNITI,Institut for Advanced Study in Toulouse(2011), ANR-14-CE25-0009,MAToS,Analyse des singularités topologiques dans quelques problèmes issus de la physique mathématique(2014), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), ANR-11-IDEX-0002,UNITI,Université Fédérale de Toulouse(2011), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), and Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)
- Subjects
Mathematics - Analysis of PDEs ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Ocean Engineering ,Numerical Analysis (math.NA) ,Mathematics - Numerical Analysis ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] ,Analysis of PDEs (math.AP) - Abstract
International audience; We introduce and implement a method to compute stationary states of nonlinear Schr\"odinger equations on metric graphs. Stationary states are obtained as local minimizers of the nonlinear Schr\"odinger energy at fixed mass. Our method is based on a normalized gradient flow for the energy (i.e. a gradient flow projected on a fixed mass sphere) adapted to the context of nonlinear quantum graphs. We first prove that, at the continuous level, the normalized gradient flow is well-posed, mass-preserving, energy diminishing and converges (at least locally) towards stationary states. We then establish the link between the continuous flow and its discretized version. We conclude by conducting a series of numerical experiments in model situations showing the good performance of the discrete flow to compute stationary states. Further experiments as well as detailed explanation of our numerical algorithm are given in a companion paper.
- Published
- 2020
- Full Text
- View/download PDF
10. On Strichartz estimates for a dispersion modulated by a time-dependent deterministic noise
- Author
-
Duboscq , Romain, Institut de Mathématiques de Toulouse UMR5219 (IMT), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT), Institut de Mathématiques de Toulouse UMR5219 ( IMT ), Centre National de la Recherche Scientifique ( CNRS ) -Institut National des Sciences Appliquées - Toulouse ( INSA Toulouse ), Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -PRES Université de Toulouse-Université Paul Sabatier - Toulouse 3 ( UPS ) -Université Toulouse - Jean Jaurès ( UT2J ) -Université Toulouse 1 Capitole ( UT1 ), Institut National des Sciences Appliquées - Toulouse ( INSA Toulouse ), Institut National des Sciences Appliquées ( INSA ), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), and Institut National des Sciences Appliquées (INSA)
- Subjects
Secondary: 60H15 ,Regularization by noise AMS 2010 subject classification: Primary: 35Q55 ,Mathematics - Analysis of PDEs ,[ MATH.MATH-AP ] Mathematics [math]/Analysis of PDEs [math.AP] ,Hardy-Littlewood-Sobolev inequality ,Nonlinear Schrödinger equation ,Mathematics::Analysis of PDEs ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Strichartz estimate ,Analysis of PDEs (math.AP) - Abstract
We address the Cauchy problem for a nonlinear Schr{\"o}dinger equation where the dispersion is modulated by a deterministic noise. The noise is understood as the derivative of a self-affine function of order H $\in$ (0, 1). Due to the self-similarity of the noise, we obtain modified Strichartz estimates which enables us to prove the global well-posedness of the equation for L2-supercritical nonlinearities. This is an occurence of regularization by noise in a purely deterministic context.
- Published
- 2018
- Full Text
- View/download PDF
11. Vortex patterns in the almost-bosonic anyon gas
- Author
-
Douglas Lundholm, Romain Duboscq, Michele Correggi, Nicolas Rougerie, Dipartimento di Matematica 'Guido Castelnuovo' [Roma I] (Sapienza University of Rome), Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome], Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA), Department of Mathematics [Sweden] (KTH), Stockholm University, Laboratoire de physique et modélisation des milieux condensés (LPM2C), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), European Project: 758620,CORFRONMAT, Correggi, Michele, Duboscq, Romain, Lundholm, Dougla, Rougerie, Nicolas, Dipartimento di Matematica 'Guido Castelnuovo' [Roma I] ( Sapienza University of Rome ), Università degli Studi di Roma 'La Sapienza' [Rome], Institut National des Sciences Appliquées - Toulouse ( INSA Toulouse ), Institut National des Sciences Appliquées ( INSA ), Department of Mathematics [Sweden] ( KTH ), Laboratoire de physique et modélisation des milieux condensés ( LPM2C ), Université Joseph Fourier - Grenoble 1 ( UJF ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Grenoble Alpes ( UGA ), European Project : 758620,CORFRONMAT, Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome] (UNIROMA), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT), and European Project: 758620,H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC),CORFRONMAT(2018)
- Subjects
[ PHYS.QPHY ] Physics [physics]/Quantum Physics [quant-ph] ,[PHYS.COND.GAS]Physics [physics]/Condensed Matter [cond-mat]/Quantum Gases [cond-mat.quant-gas] ,[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,Anyon ,General Physics and Astronomy ,FOS: Physical sciences ,Trapping ,01 natural sciences ,Topological quantum computer ,[ PHYS.COND.GAS ] Physics [physics]/Condensed Matter [cond-mat]/Quantum Gases [cond-mat.quant-gas] ,010305 fluids & plasmas ,[ MATH.MATH-AP ] Mathematics [math]/Analysis of PDEs [math.AP] ,Mathematics - Analysis of PDEs ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,Quantum mechanics ,0103 physical sciences ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Mathematics - Numerical Analysis ,Abelian group ,010306 general physics ,Settore MAT/07 - Fisica Matematica ,Mathematical Physics ,Energy functional ,Physics ,Condensed Matter::Quantum Gases ,Quantum Physics ,[ MATH.MATH-NA ] Mathematics [math]/Numerical Analysis [math.NA] ,Mathematical Physics (math-ph) ,Numerical Analysis (math.NA) ,Gauge (firearms) ,Vortex ,Quantum Gases (cond-mat.quant-gas) ,[ PHYS.MPHY ] Physics [physics]/Mathematical Physics [math-ph] ,Ground state ,Quantum Physics (quant-ph) ,Condensed Matter - Quantum Gases ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] ,Analysis of PDEs (math.AP) - Abstract
International audience; We study theoretically and numerically the ground state of a gas of 2D abelian anyons in an external trapping potential. We treat anyon statistics in the magnetic gauge picture, perturbatively around the bosonic end. This leads to a mean-field energy functional, whose ground state displays vortex lattices similar to those found in rotating Bose-Einstein condensates. A crucial difference is however that the vortex density is proportional to the underlying matter density of the gas.
- Published
- 2019
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.