1. Spinorial representation of submanifolds in metric Lie groups
- Author
-
Bayard, Pierre, Roth, Julien, and Jiménez, Berenice Zavala
- Subjects
Mathematics - Differential Geometry ,53C27, 53C40 - Abstract
In this paper we give a spinorial representation of submanifolds of any dimension and codimension into Lie groups equipped with left invariant metrics. As applications, we get a spinorial proof of the Fundamental Theorem for submanifolds into Lie groups, we recover previously known representations of submanifolds in $\mathbb{R}^n$ and in the 3-dimensional Lie groups $S^3$ and $E(\kappa,\tau),$ and we get a new spinorial representation for surfaces in the 3-dimensional semi-direct products: this achieves the spinorial representations of surfaces in the 3-dimensional homogeneous spaces. We finally indicate how to recover a Weierstrass-type representation for CMC-surfaces in 3-dimensional metric Lie groups recently given by Meeks, Mira, Perez and Ros., Comment: 35 pages, no figures
- Published
- 2016
- Full Text
- View/download PDF