1. Global Cauchy problem for the NLKG in super-critical spaces
- Author
-
Wang, Baoxiang
- Subjects
Mathematics - Analysis of PDEs ,Mathematics - Functional Analysis ,35L71, 42B35, 42B37 - Abstract
By introducing a class of new function spaces $B^{\sigma,s}_{p,q}$ as the resolution spaces, we study the Cauchy problem for the nonlinear Klein-Gordon equation (NLKG) in all spatial dimensions $d \geqslant 1$, $$ \partial^2_t u + u- \Delta u + u^{1+\alpha} =0, \ \ (u, \partial_t u)|_{t=0} = (u_0,u_1). $$ We consider the initial data $(u_0,u_1)$ in super-critical function spaces $E^{\sigma,s} \times E^{\sigma-1,s}$ for which their norms are defined by $$ \|f\|_{E^{\sigma,s}} = \|\langle\xi\rangle^\sigma 2^{s|\xi|}\widehat{f}(\xi)\|_{L^2}, \ s<0, \ \sigma \in \mathbb{R}. $$ Any Sobolev space $H^{\kappa}$ can be embedded into $ E^{\sigma,s}$, i.e., $H^\kappa \subset E^{\sigma,s}$ for any $ \kappa,\sigma \in \mathbb{R}$ and $s<0$. We show the global existence and uniqueness of the solutions of NLKG if the initial data belong to some $E^{\sigma,s} \times E^{ \sigma-1,s}$ ($s<0, \ \sigma \geqslant \max (d/2-2/\alpha, \, 1/2), \ \alpha\in \mathbb{N}, \ \alpha \geqslant 4/d$) and their Fourier transforms are supported in the first octant, the smallness conditions on the initial data in $E^{\sigma,s} \times E^{\sigma-1,s}$ are not required for the global solutions. Similar results hold for the sinh-Gordon equation $\partial^2_t u - \Delta u + \sinh u=0$ if the spatial dimensions $d \geqslant 2$., Comment: 57 pages
- Published
- 2023