1. Constrained overdamped Langevin dynamics for symmetric multimarginal optimal transportation
- Author
-
Aurélien Alfonsi, Rafaël Coyaud, Virginie Ehrlacher, Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique (CERMICS), École des Ponts ParisTech (ENPC), Mathematical Risk Handling (MATHRISK), Université Paris-Est Marne-la-Vallée (UPEM)-École des Ponts ParisTech (ENPC)-Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), MATHematics for MatERIALS (MATHERIALS), Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique (CERMICS), École des Ponts ParisTech (ENPC)-École des Ponts ParisTech (ENPC), The Labex Bézout is acknowledged for funding the PhD thesis of Rafaël Coyaud. Aurélien Alfonsi benefited from the support of the 'Chaire Risques Financiers', Fondation du Risque. We are very grateful to Gero Friesecke, Daniela Vögler, Tony Lelièvre, Gabriel Stoltz and Pierre Monmarché for stimulating discussions, as well as Mathieu Lewin for precious comments on the paper. This publication is part of a project that has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme – Grant Agreement n◦ 810367., European Project: 810367,EMC2(2019), and École des Ponts ParisTech (ENPC)-École des Ponts ParisTech (ENPC)-Inria de Paris
- Subjects
Applied Mathematics ,Modeling and Simulation ,FOS: Mathematics ,Mathematics - Numerical Analysis ,Numerical Analysis (math.NA) ,[MATH]Mathematics [math] - Abstract
The Strictly Correlated Electrons (SCE) limit of the Levy–Lieb functional in Density Functional Theory (DFT) gives rise to a symmetric multi-marginal optimal transport problem with Coulomb cost, where the number of marginal laws is equal to the number of electrons in the system, which can be very large in relevant applications. In this work, we design a numerical method, built upon constrained overdamped Langevin processes to solve Moment Constrained Optimal Transport (MCOT) relaxations (introduced in [A. Alfonsi, R. Coyaud, V. Ehrlacher and D. Lombardi, Approximation of optimal transport problems with marginal moments constraints, Math. Comp. 90 (2021) 689–737; C. Villani, Optimal Transport: Old and New (Springer Science & Business Media, 2008)]) of symmetric multi-marginal optimal transport problems with Coulomb cost. Some minimizers of such relaxations can be written as discrete measures charging a low number of points belonging to a space whose dimension, in the symmetrical case, scales linearly with the number of marginal laws. We leverage the sparsity of those minimizers in the design of the numerical method and prove that there is no strict local minimizer to the resulting problem. We illustrate the performance of the proposed method by numerical examples which solves MCOT relaxations of 3D systems with up to 100 electrons.
- Published
- 2021