1. Eigenvarieties for classical groups and complex conjugations in Galois representations
- Author
-
Olivier Taïbi, Département de Mathématiques et Applications - ENS Paris (DMA), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Centre de Mathématiques Laurent Schwartz (CMLS), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), École normale supérieure - Paris (ENS Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Classical group ,Pure mathematics ,Mathematics::Number Theory ,General Mathematics ,Automorphic form ,General linear group ,Eigenvarieties ,01 natural sciences ,0103 physical sciences ,FOS: Mathematics ,Number Theory (math.NT) ,Representation Theory (math.RT) ,0101 mathematics ,Algebraic number ,Mathematics::Representation Theory ,Mathematics ,Automorphic forms ,Mathematics - Number Theory ,[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT] ,Galois representations ,010102 general mathematics ,Classical groups ,16. Peace & justice ,Galois module ,[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT] ,Character (mathematics) ,010307 mathematical physics ,Totally real number field ,Mathematics - Representation Theory ,Symplectic geometry - Abstract
The goal of this paper is to remove the irreducibility hypothesis in a theorem of Richard Taylor describing the image of complex conjugations by $p$-adic Galois representations associated with regular, algebraic, essentially self-dual, cuspidal automorphic representations of $\GL_{2n+1}$ over a totally real number field $F$. We also extend it to the case of representations of $\GL_{2n}/F$ whose multiplicative character is ''odd''. We use a $p$-adic deformation argument, more precisely we prove that on the eigenvarieties for symplectic and even orthogonal groups, there are ''many'' points corresponding to (quasi-)irreducible Galois representations. The recent work of James Arthur describing the automorphic spectrum for these groups is used to define these Galois representations, and also to transfer self-dual automorphic representations of the general linear group to these classical groups.
- Published
- 2016
- Full Text
- View/download PDF