Konstantina Lambrinou, Dominique Thiaudière, Louis Hennet, Joke Hadermann, Bensu Tunca, Daniel R. Neuville, Jozef Vleugels, Thomas Lapauw, Rémi Delville, Thierry Ouisse, Physics, University of Antwerp (UA), Institut de Physique du Globe de Paris (IPGP), Institut national des sciences de l'Univers (INSU - CNRS)-IPG PARIS-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS), Conditions Extrêmes et Matériaux : Haute Température et Irradiation (CEMHTI), Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), Université d'Orléans (UO), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Laboratoire des matériaux et du génie physique (LMGP ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université de La Réunion (UR)-Université Paris Diderot - Paris 7 (UPD7)-IPG PARIS-Institut national des sciences de l'Univers (INSU - CNRS), Laboratoire des matériaux et du génie physique (LMGP), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Grenoble (INPG), Catholic University of Leuven - Katholieke Universiteit Leuven (KU Leuven), Université d'Orléans (UO)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut National Polytechnique de Grenoble (INPG)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Electron Microscopy for Materials Research, University of Huddersfield, Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université d'Orléans (UO), and Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)
Quasi phase-pure (>98 wt %) MAX phase solid solution ceramics with the (Zr,Ti)2(Al0.5,Sn0.5)C stoichiometry and variable Zr/Ti ratios were synthesized by both reactive hot pressing and pressureless sintering of ZrH2, TiH2, Al, Sn, and C powder mixtures. The influence of the different processing parameters, such as applied pressure and sintering atmosphere, on phase purity and microstructure of the produced ceramics was investigated. The addition of Sn to the (Zr,Ti)2AlC system was the key to achieve phase purity. Its effect on the crystal structure of a 211-type MAX phase was assessed by calculating the distortions of the octahedral M6C and trigonal M6A prisms due to steric effects. The M6A prismatic distortion values were found to be smaller in Sn-containing double solid solutions than in the (Zr,Ti)2AlC MAX phases. The coefficients of thermal expansion along the ⟨ a⟩ and ⟨ c⟩ directions were measured by means of Rietveld refinement of high-temperature synchrotron X-ray diffraction data of (Zr1- x,Ti x)2(Al0.5,Sn0.5)C MAX phase solid solutions with x = 0, 0.3, 0.7, and 1. The thermal expansion coefficient data of the Ti2(Al0.5,Sn0.5)C solid solution were compared with those of the Ti2AlC and Ti2SnC ternary compounds. The thermal expansion anisotropy increased in the (Zr,Ti)2(Al0.5,Sn0.5)C double solid solution MAX phases as compared to the Zr2(Al0.5,Sn0.5)C and Ti2(Al0.5,Sn0.5)C end-members. ispartof: INORGANIC CHEMISTRY vol:58 issue:10 pages:6669-6683 ispartof: location:United States status: published