Bruno Cessac, Cesar Maldonado, Rodrigo Cofré, Centro de Investigación y Modelamiento de Fenómenos Aleatorios – Valparaíso (CIMFAV), Universidad de Valparaiso [Chile], Instituto Potosino de Investigacion Cientifica y Tecnologica (IPICYT), Consejo Nacional de Ciencia y Tecnología [Mexico] (CONACYT), Biologically plausible Integrative mOdels of the Visual system : towards synergIstic Solutions for visually-Impaired people and artificial visiON (BIOVISION), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Equipe associee Magma, and Cessac, Bruno
The Thermodynamic Formalism provides a rigorous mathematical framework to study quantitative and qualitative aspects of dynamical systems. At its core there is a variational principle and corresponding, in its simplest form, to the Maximum Entropy principle, used as a statistical inference procedure to represent, by specific probability measures (Gibbs measures), the collective behaviour of complex systems. This framework has found applications in different domains of scienThe Thermodynamic Formalism provides a rigorous mathematical framework to study quantitative and qualitative aspects of dynamical systems. At its core there is a variational principle and corresponding, in its simplest form, to the Maximum Entropy principle, used as a statistical inference procedure to represent, by specific probability measures (Gibbs measures), the collective behaviour of complex systems. This framework has found applications in different domains of science, in particular, has been fruitful and influential in neurosciences. In this article, we review how the Thermodynamic Formalism can be exploited in the field of theoretical neuroscience, as a conceptual and operational tool, to link the dynamics of interacting neurons and the statistics of action potentials from either experimental data or mathematical models. We comment on perspectives and open problems in theoretical neuroscience that could be addressed within this formalism.ce, in particular, has been fruitful and influential in neurosciences. In this article, we review how the Thermodynamic Formalism can be exploited in the field of theoretical neuroscience, as a conceptual and operational tool, to link the dynamics of interacting neurons and the statistics of action potentials from either experimental data or mathematical models. We comment on perspectives and open problems in theoretical neuroscience that could be addressed within this formalism.