1. Combinatory Effects of Acrylamide and Deoxynivalenol on In Vitro Cell Viability and Cytochrome P450 Enzymes of Human HepaRG Cells
- Author
-
Julia Beisl, Kristina Jochum, Yi Chen, Elisabeth Varga, and Doris Marko
- Subjects
food processing ,hepatocytes ,metabolism ,mixtures ,process contaminants ,acrylamide ,Medicine - Abstract
Acrylamide (AA) can be formed during the thermal processing of carbohydrate-rich foods. Deoxynivalenol (DON), a mycotoxin produced by Fusarium spp., contaminates many cereal-based products. In addition to potential co-exposure through a mixed diet, co-occurrence of AA and DON in thermally processed cereal-based products is also likely, posing the question of combinatory toxicological effects. In the present study, the effects of AA (0.001–3 mM) and DON (0.1–30 µM) on the cytotoxicity, gene transcription, and expression of major cytochrome P450 (CYP) enzymes were investigated in differentiated human hepatic HepaRG cells. In the chosen ratios of AA–DON (10:1; 100:1), cytotoxicity was clearly driven by DON and no overadditive effects were observed. Using quantitative real-time PCR, about twofold enhanced transcript levels of CYP1A1 were observed at low DON concentrations (0.3 and 1 µM), reflected by an increase in CYP1A activity in the EROD assay. In contrast, CYP2E1 and CYP3A4 gene transcription decreased in a concentration-dependent manner after incubation with DON (0.01–0.3 µM). Nevertheless, confocal microscopy showed comparably constant protein levels. The present study provided no indication of an induction of CYP2E1 as a critical step in AA bioactivation by co-occurrence with DON. Taken together, the combination of AA and DON showed no clear physiologically relevant interaction in HepaRG cells. more...
- Published
- 2024
- Full Text
- View/download PDF