1. Whole genome sequencing across clinical trials identifies rare coding variants in GPR68 associated with chemotherapy-induced peripheral neuropathy
- Author
-
Zia Khan, Min Jung, Megan Crow, Rajat Mohindra, Vidya Maiya, Joshua S. Kaminker, David H. Hackos, G. Scott Chandler, Mark I. McCarthy, and Tushar Bhangale
- Subjects
Chemotherapy-induced peripheral neuropathy ,CIPN ,GPR68 ,GRID2 ,Cancer ,Whole genome sequencing ,Medicine ,Genetics ,QH426-470 - Abstract
Abstract Background Dose-limiting toxicities significantly impact the benefit/risk profile of many drugs. Whole genome sequencing (WGS) in patients receiving drugs with dose-limiting toxicities can identify therapeutic hypotheses to prevent these toxicities. Chemotherapy-induced peripheral neuropathy (CIPN) is a common dose-limiting neurological toxicity of chemotherapies with no effective approach for prevention. Methods We conducted a genetic study of time-to-first peripheral neuropathy event using 30× germline WGS data from whole blood samples from 4900 European-ancestry cancer patients in 14 randomized controlled trials. A substantial number of patients in these trials received taxane and platinum-based chemotherapies as part of their treatment regimen, either standard of care or in combination with the PD-L1 inhibitor atezolizumab. The trials spanned several cancers including renal cell carcinoma, triple negative breast cancer, non-small cell lung cancer, small cell lung cancer, bladder cancer, ovarian cancer, and melanoma. Results We identified a locus consisting of low-frequency variants in intron 13 of GRID2 associated with time-to-onset of first peripheral neuropathy (PN) indexed by rs17020773 (p = 2.03 × 10−8, all patients, p = 6.36 × 10−9, taxane treated). Gene-level burden analysis identified rare coding variants associated with increased PN risk in the C-terminus of GPR68 (p = 1.59 × 10−6, all patients, p = 3.47 × 10−8, taxane treated), a pH-sensitive G-protein coupled receptor (GPCR). The variants driving this signal were found to alter predicted arrestin binding motifs in the C-terminus of GPR68. Analysis of snRNA-seq from human dorsal root ganglia (DRG) indicated that expression of GPR68 was highest in mechano-thermo-sensitive nociceptors. Conclusions Our genetic study provides insight into the impact of low-frequency and rare coding genetic variation on PN risk and suggests that further study of GPR68 in sensory neurons may yield a therapeutic hypothesis for prevention of CIPN.
- Published
- 2023
- Full Text
- View/download PDF