A human alveolar macrophage genome-scale metabolic reconstruction was reconstructed from tailoring a global human metabolic network, Recon 1, by using computational algorithms and manual curation. A genome-scale host–pathogen network of the human alveolar macrophage and Mycobacterium tuberculosis is presented. This involved integrating two genome-scale network reconstructions. The reaction activity and gene essentiality predictions of the host–pathogen model represent a more accurate depiction of infection. Integration of high-throughput data into a host-pathogen model followed by systems analysis was performed in order to elucidate major metabolic differences under different types of M. tuberculosis infection., Mycobacterium tuberculosis (M. tb) is an insidious and highly persistent pathogen that affects one-third of the world's population (WHO, 2009). Metabolism is foundational to M. tb's infection ability and the ensuing host–pathogen interactions. In addition, M. tb has a heterogeneous clinical presentation and can infect virtually every tissue. Depending on the location of the infection, different metabolic pathways are active and inactive in both the host and pathogen cells. In this study, we sought to model the host–pathogen interactions of the human alveolar macrophage and M. tb as well as detail the metabolic differences in specific infection types using genome-scale metabolic reconstructions (Figure 4A). Genome-scale metabolic reconstructions are knowledge bases of all known metabolic reactions of a given organism. Reconstructions have been shown to elucidate the mechanistic genotype-to-phenotype relationship through the integration of high-throughput and physiological data (Oberhardt et al, 2009). Genome-scale reconstructions are converted into mathematical models under the constraints-based reconstruction and analysis (COBRA) platform (Becker et al, 2007). COBRA models use network stoichiometry and steady-state mass balances to define a solution space of potential flux states that a network can take. Thus, the COBRA approach does not require kinetic parameters. Recently, the global human metabolic network, Recon 1, has been reconstructed (Duarte et al, 2007). To understand the metabolic host–pathogen integrations of M. tb with its human host, we first tailored the global human metabolic network into a cell-specific metabolic reconstruction of the human alveolar macrophage. This was carried out using established computational algorithms (Becker and Palsson, 2008; Shlomi et al, 2008) and manual curation to confirm the included and excluded reactions. The human alveolar macrophage reconstruction, iAB-AMØ-1410, accounts for 1410 genes, 3012 intracellular reactions, and 2572 metabolites (Figure 4C). iAB-AMØ-1410 was able to accurately predict maximum ATP and NO production rates obtained from experimental data (Griscavage et al, 1993; Newsholme et al, 1999). The second step to studying host–pathogen interactions was integration of the human alveolar macrophage reconstruction with an existing genome-scale metabolic model of M. tb, iNJ661 (Jamshidi and Palsson, 2007). Interfacial constraints were set to create a phagosomal environment that was hypoxic, nitrosative, rich in fatty acids, and poor in carbohydrates. From the onset, it was apparent that some oxygen (, Metabolic coupling of Mycobacterium tuberculosis to its host is foundational to its pathogenesis. Computational genome-scale metabolic models have shown utility in integrating -omic as well as physiologic data for systemic, mechanistic analysis of metabolism. To date, integrative analysis of host–pathogen interactions using in silico mass-balanced, genome-scale models has not been performed. We, therefore, constructed a cell-specific alveolar macrophage model, iAB-AMØ-1410, from the global human metabolic reconstruction, Recon 1. The model successfully predicted experimentally verified ATP and nitric oxide production rates in macrophages. This model was then integrated with an M. tuberculosis H37Rv model, iNJ661, to build an integrated host–pathogen genome-scale reconstruction, iAB-AMØ-1410-Mt-661. The integrated host–pathogen network enables simulation of the metabolic changes during infection. The resulting reaction activity and gene essentiality targets of the integrated model represent an altered infectious state. High-throughput data from infected macrophages were mapped onto the host–pathogen network and were able to describe three distinct pathological states. Integrated host–pathogen reconstructions thus form a foundation upon which understanding the biology and pathophysiology of infections can be developed.