Julius Vira, Pilvi Siljamo, Dmitry Khvorostyanov, Anna-Mari Pessi, Olga Ritenberga, Lennart Robertson, Michel Thibaudon, Karl-Christian Bergmann, Annika Saarto, Elena Severova, Victoria Rodinkova, Laurent Menut, E. Friese, Marje Prank, Richard Kranenburg, Vincent-Henri Peuch, E. Teinemaa, Carmen Galán, Robert Gehrig, Uwe Berger, U. Kumar, Joaquim Arteta, F. Cheroux, Hendrik Elbern, Jordina Belmonte, Mikhail Sofiev, Virginie Marécal, Birthe Marie Steensen, Frédérik Meleux, Arjo Segers, I. Sauliene, Finnish Meteorological Institute (FMI), Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Federal Office of Meteorology and Climatology MeteoSwiss, Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), The Netherlands Organisation for Applied Scientific Research (TNO), Royal Netherlands Meteorological Institute (KNMI), Institut National de l'Environnement Industriel et des Risques (INERIS), Swedish Meteorological and Hydrological Institute (SMHI), Norwegian Meteorological Institute [Oslo] (MET), Réseau National de Surveillance Aérobiologique (RNSA), Groupe d'étude de l'atmosphère météorologique (CNRM-GAME), Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS), Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École des Ponts ParisTech (ENPC)-École polytechnique (X)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)
This paper presents the first ensemble modelling experiment in relation to birch pollen in Europe. The seven-model European ensemble of MACC-ENS, tested in trial simulations over the flowering season of 2010, was run through the flowering season of 2013. The simulations have been compared with observations in 11 countries, all members of the European Aeroallergen Network, for both individual models and the ensemble mean and median. It is shown that the models successfully reproduced the timing of the very late season of 2013, generally within a couple of days from the observed start of the season. The end of the season was generally predicted later than observed, by 5 days or more, which is a known feature of the source term used in the study. Absolute pollen concentrations during the season were somewhat underestimated in the southern part of the birch habitat. In the northern part of Europe, a record-low pollen season was strongly overestimated by all models. The median of the multi-model ensemble demonstrated robust performance, successfully eliminating the impact of outliers, which was particularly useful since for most models this was the first experience of pollen forecasting.