1. Full 3D anisotropic estimation of tissue in ultrasound imaging
- Author
-
Herve Liebgott, Francois Varray, Magalie Viallon, Lorena Petrusca, Emeline Turquin, Imagerie Ultrasonore, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM), and RMN et optique : De la mesure au biomarqueur
- Subjects
0301 basic medicine ,Materials science ,medicine.diagnostic_test ,Fiber (mathematics) ,business.industry ,Ultrasound ,Imaging phantom ,03 medical and health sciences ,[SPI]Engineering Sciences [physics] ,030104 developmental biology ,0302 clinical medicine ,medicine ,Coherence (signal processing) ,3D ultrasound ,business ,Anisotropy ,Ultrashort pulse ,030217 neurology & neurosurgery ,ComputingMilieux_MISCELLANEOUS ,Biomedical engineering ,Diffusion MRI - Abstract
In cardiac diseases or after myocardial infarction, the fibrous layout in the heart can be modified. To determine the local fiber orientation and to characterize the lesion, an imaging method is required. The fiber orientation can be determined by diffusion MRI, but various factors limit its use in a beating heart. It has been demonstrated that ultrafast ultrasound imaging can measure the local fiber orientation of an in vivo heart based on the ultrasound spatial coherence. This method only returns the fiber orientations in planes parallel to the probe surface. We propose a method called 3D coherence function to improve this initial strategy to extract the full 3D local anisotropy. To validate this approach, 3D ultrasound datasets were acquired on a phantom constituted of several wire layers mimicking different fiber layers. The acquisitions were conducted with different angles between the probe surface and the wire layers. For each dataset, the conventional approach and our 3D coherence function were computed to compare the improvement in the fiber angle evaluation. We have demonstrated that when the out-of-plane angle increases, the 3D coherence function allows a better extraction of the angle.
- Published
- 2019
- Full Text
- View/download PDF