1. Ca2+ current enhancement by alpha 2/delta and beta subunits in Xenopus oocytes: contribution of changes in channel gating and alpha 1 protein level.
- Author
-
Shistik E, Ivanina T, Puri T, Hosey M, and Dascal N
- Subjects
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester pharmacology, Animals, Calcium Channels drug effects, Electrophoresis, Ion Channels physiology, Membrane Potentials drug effects, Membrane Potentials physiology, Oocytes physiology, Patch-Clamp Techniques, Xenopus, Calcium Channels physiology, Membrane Proteins physiology
- Abstract
1. A combined biochemical and electrophysiological approach was used to determine the mechanism by which the auxiliary subunits of Ca2+ channel enhance the macroscopic Ca2+ currents. Xenopus oocytes were injected with RNA of the main pore-forming subunit (cardiac: alpha 1C), and various combinations of RNAs of the auxiliary subunits (alpha 2/delta and beta 2A). 2. The single channel open probability (Po; measured at 0 mV) was increased approximately 3-, approximately 8- and approximately 35-fold by alpha 2/delta, beta 2A and alpha 2/delta+beta 2A, respectively. The whole-cell Ca2+ channel current was increased approximately 8- to 10-fold by either alpha 2/delta or beta 2A, and synergistically > 100-fold by alpha 2/delta+beta 2A. The amount of 35S-labelled alpha 1 protein in the plasma membrane was not changed by coexpression of beta 2A, but was tripled by coexpression of alpha 2/delta (either with or without beta). 3. We conclude that the increase in macroscopic current by alpha 2/delta is equally due to changes in amount of alpha 1 in the plasma membrane and an increase in Po, whereas all of the effect of beta 2A is due to an increase in Po. The synergy between alpha 2/delta and beta in increasing the macroscopic current is due mainly to synergistic changes in channel gating. more...
- Published
- 1995
- Full Text
- View/download PDF